mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
Harrison/inference endpoint (#861)
Co-authored-by: Eno Reyes <enoreyes@gmail.com>
This commit is contained in:
parent
2ec25ddd4c
commit
ba5a2f06b9
140
langchain/llms/huggingface_endpoint.py
Normal file
140
langchain/llms/huggingface_endpoint.py
Normal file
@ -0,0 +1,140 @@
|
||||
"""Wrapper around HuggingFace APIs."""
|
||||
from typing import Any, Dict, List, Mapping, Optional
|
||||
|
||||
import requests
|
||||
from pydantic import BaseModel, Extra, root_validator
|
||||
|
||||
from langchain.llms.base import LLM
|
||||
from langchain.llms.utils import enforce_stop_tokens
|
||||
from langchain.utils import get_from_dict_or_env
|
||||
|
||||
VALID_TASKS = ("text2text-generation", "text-generation")
|
||||
|
||||
|
||||
class HuggingFaceEndpoint(LLM, BaseModel):
|
||||
"""Wrapper around HuggingFaceHub Inference Endpoints.
|
||||
|
||||
To use, you should have the ``huggingface_hub`` python package installed, and the
|
||||
environment variable ``HUGGINGFACEHUB_API_TOKEN`` set with your API token, or pass
|
||||
it as a named parameter to the constructor.
|
||||
|
||||
Only supports `text-generation` and `text2text-generation` for now.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain import HuggingFaceEndpoint
|
||||
endpoint_url = (
|
||||
"https://abcdefghijklmnop.us-east-1.aws.endpoints.huggingface.cloud"
|
||||
)
|
||||
hf = HuggingFaceEndpoint(
|
||||
endpoint_url=endpoint_url,
|
||||
huggingfacehub_api_token="my-api-key"
|
||||
)
|
||||
"""
|
||||
|
||||
endpoint_url: str = ""
|
||||
"""Endpoint URL to use."""
|
||||
task: Optional[str] = None
|
||||
"""Task to call the model with. Should be a task that returns `generated_text`."""
|
||||
model_kwargs: Optional[dict] = None
|
||||
"""Key word arguments to pass to the model."""
|
||||
|
||||
huggingfacehub_api_token: Optional[str] = None
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
extra = Extra.forbid
|
||||
|
||||
@root_validator()
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
"""Validate that api key and python package exists in environment."""
|
||||
huggingfacehub_api_token = get_from_dict_or_env(
|
||||
values, "huggingfacehub_api_token", "HUGGINGFACEHUB_API_TOKEN"
|
||||
)
|
||||
try:
|
||||
from huggingface_hub.hf_api import HfApi
|
||||
|
||||
try:
|
||||
HfApi(
|
||||
endpoint="https://huggingface.co", # Can be a Private Hub endpoint.
|
||||
token=huggingfacehub_api_token,
|
||||
).whoami()
|
||||
except Exception as e:
|
||||
raise ValueError(
|
||||
"Could not authenticate with huggingface_hub. "
|
||||
"Please check your API token."
|
||||
) from e
|
||||
|
||||
except ImportError:
|
||||
raise ValueError(
|
||||
"Could not import huggingface_hub python package. "
|
||||
"Please it install it with `pip install huggingface_hub`."
|
||||
)
|
||||
return values
|
||||
|
||||
@property
|
||||
def _identifying_params(self) -> Mapping[str, Any]:
|
||||
"""Get the identifying parameters."""
|
||||
_model_kwargs = self.model_kwargs or {}
|
||||
return {
|
||||
**{"endpoint_url": self.endpoint_url, "task": self.task},
|
||||
**{"model_kwargs": _model_kwargs},
|
||||
}
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
"""Return type of llm."""
|
||||
return "huggingface_endpoint"
|
||||
|
||||
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
|
||||
"""Call out to HuggingFace Hub's inference endpoint.
|
||||
|
||||
Args:
|
||||
prompt: The prompt to pass into the model.
|
||||
stop: Optional list of stop words to use when generating.
|
||||
|
||||
Returns:
|
||||
The string generated by the model.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
response = hf("Tell me a joke.")
|
||||
"""
|
||||
_model_kwargs = self.model_kwargs or {}
|
||||
|
||||
# payload samples
|
||||
parameter_payload = {"inputs": prompt, "parameters": _model_kwargs}
|
||||
|
||||
# HTTP headers for authorization
|
||||
headers = {
|
||||
"Authorization": f"Bearer {self.huggingfacehub_api_token}",
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
|
||||
# send request
|
||||
try:
|
||||
response = requests.post(
|
||||
self.endpoint_url, headers=headers, json=parameter_payload
|
||||
)
|
||||
except requests.exceptions.RequestException as e: # This is the correct syntax
|
||||
raise ValueError(f"Error raised by inference endpoint: {e}")
|
||||
if self.task == "text-generation":
|
||||
# Text generation return includes the starter text.
|
||||
generated_text = response.json()
|
||||
text = generated_text[0]["generated_text"][len(prompt) :]
|
||||
elif self.task == "text2text-generation":
|
||||
generated_text = response.json()
|
||||
text = generated_text[0]["generated_text"]
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Got invalid task {self.task}, "
|
||||
f"currently only {VALID_TASKS} are supported"
|
||||
)
|
||||
if stop is not None:
|
||||
# This is a bit hacky, but I can't figure out a better way to enforce
|
||||
# stop tokens when making calls to huggingface_hub.
|
||||
text = enforce_stop_tokens(text, stop)
|
||||
return text
|
50
tests/integration_tests/llms/test_huggingface_endpoint.py
Normal file
50
tests/integration_tests/llms/test_huggingface_endpoint.py
Normal file
@ -0,0 +1,50 @@
|
||||
"""Test HuggingFace API wrapper."""
|
||||
|
||||
import unittest
|
||||
from pathlib import Path
|
||||
|
||||
import pytest
|
||||
|
||||
from langchain.llms.huggingface_endpoint import HuggingFaceEndpoint
|
||||
from langchain.llms.loading import load_llm
|
||||
from tests.integration_tests.llms.utils import assert_llm_equality
|
||||
|
||||
|
||||
@unittest.skip(
|
||||
"This test requires an inference endpoint. Tested with Hugging Face endpoints"
|
||||
)
|
||||
def test_huggingface_endpoint_text_generation() -> None:
|
||||
"""Test valid call to HuggingFace text generation model."""
|
||||
llm = HuggingFaceEndpoint(
|
||||
endpoint_url="", task="text-generation", model_kwargs={"max_new_tokens": 10}
|
||||
)
|
||||
output = llm("Say foo:")
|
||||
print(output)
|
||||
assert isinstance(output, str)
|
||||
|
||||
|
||||
@unittest.skip(
|
||||
"This test requires an inference endpoint. Tested with Hugging Face endpoints"
|
||||
)
|
||||
def test_huggingface_endpoint_text2text_generation() -> None:
|
||||
"""Test valid call to HuggingFace text2text model."""
|
||||
llm = HuggingFaceEndpoint(endpoint_url="", task="text2text-generation")
|
||||
output = llm("The capital of New York is")
|
||||
assert output == "Albany"
|
||||
|
||||
|
||||
def test_huggingface_endpoint_call_error() -> None:
|
||||
"""Test valid call to HuggingFace that errors."""
|
||||
llm = HuggingFaceEndpoint(model_kwargs={"max_new_tokens": -1})
|
||||
with pytest.raises(ValueError):
|
||||
llm("Say foo:")
|
||||
|
||||
|
||||
def test_saving_loading_endpoint_llm(tmp_path: Path) -> None:
|
||||
"""Test saving/loading an HuggingFaceHub LLM."""
|
||||
llm = HuggingFaceEndpoint(
|
||||
endpoint_url="", task="text-generation", model_kwargs={"max_new_tokens": 10}
|
||||
)
|
||||
llm.save(file_path=tmp_path / "hf.yaml")
|
||||
loaded_llm = load_llm(tmp_path / "hf.yaml")
|
||||
assert_llm_equality(llm, loaded_llm)
|
Loading…
Reference in New Issue
Block a user