Fix bug in index api (#10614)

<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

- **Description:** a fix for `index`.
- **Issue:** Not applicable.
- **Dependencies:** None
- **Tag maintainer:** 
- **Twitter handle:** richarddwang

# Problem
Replication code
```python
from pprint import pprint
from langchain.embeddings import OpenAIEmbeddings
from langchain.indexes import SQLRecordManager, index
from langchain.schema import Document
from langchain.vectorstores import Qdrant
from langchain_setup.qdrant import pprint_qdrant_documents, create_inmemory_empty_qdrant

# Documents
metadata1 = {"source": "fullhell.alchemist"}
doc1_1 = Document(page_content="1-1 I have a dog~", metadata=metadata1)
doc1_2 = Document(page_content="1-2 I have a daugter~", metadata=metadata1)
doc1_3 = Document(page_content="1-3 Ahh! O..Oniichan", metadata=metadata1)
doc2 = Document(page_content="2 Lancer died again.", metadata={"source": "fate.docx"})

# Create empty vectorstore
collection_name = "secret_of_D_disk"
vectorstore: Qdrant = create_inmemory_empty_qdrant()

# Create record Manager
import tempfile
from pathlib import Path

record_manager = SQLRecordManager(
    namespace="qdrant/{collection_name}",
    db_url=f"sqlite:///{Path(tempfile.gettempdir())/collection_name}.sql",
)
record_manager.create_schema()  # 必須

sync_result = index(
    [doc1_1, doc1_2, doc1_2, doc2],
    record_manager,
    vectorstore,
    cleanup="full",
    source_id_key="source",
)
print(sync_result, end="\n\n")
pprint_qdrant_documents(vectorstore)
```
<details>
<summary>Code of helper functions `pprint_qdrant_documents` and
`create_inmemory_empty_qdrant`</summary>

```python
def create_inmemory_empty_qdrant(**from_texts_kwargs):
    # Qdrant requires vector size, which can be only know after applying embedder
    vectorstore = Qdrant.from_texts(["dummy"], location=":memory:", embedding=OpenAIEmbeddings(), **from_texts_kwargs)
    dummy_document_id = vectorstore.client.scroll(vectorstore.collection_name)[0][0].id
    vectorstore.delete([dummy_document_id])
    return vectorstore

def pprint_qdrant_documents(vectorstore, limit: int = 100, **scroll_kwargs):
    document_ids, documents = [], []
    for record in vectorstore.client.scroll(
        vectorstore.collection_name, limit=100, **scroll_kwargs
    )[0]:
        document_ids.append(record.id)
        documents.append(
            Document(
                page_content=record.payload["page_content"],
                metadata=record.payload["metadata"] or {},
            )
        )
    pprint_documents(documents, document_ids=document_ids)

def pprint_document(document: Document = None, document_id=None, return_string=False):
    displayed_text = ""
    if document_id:
        displayed_text += f"Document {document_id}:\n\n"
    displayed_text += f"{document.page_content}\n\n"
    metadata_text = pformat(document.metadata, indent=1)
    if "\n" in metadata_text:
        displayed_text += f"Metadata:\n{metadata_text}"
    else:
        displayed_text += f"Metadata:{metadata_text}"

    if return_string:
        return displayed_text
    else:
        print(displayed_text)


def pprint_documents(documents, document_ids=None):
    if not document_ids:
        document_ids = [i + 1 for i in range(len(documents))]

    displayed_texts = []
    for document_id, document in zip(document_ids, documents):
        displayed_text = pprint_document(
            document_id=document_id, document=document, return_string=True
        )
        displayed_texts.append(displayed_text)
    print(f"\n{'-' * 100}\n".join(displayed_texts))
```
</details>
You will get

```
{'num_added': 3, 'num_updated': 0, 'num_skipped': 0, 'num_deleted': 0}

Document 1b19816e-b802-53c0-ad60-5ff9d9b9b911:

1-2 I have a daugter~

Metadata:{'source': 'fullhell.alchemist'}
----------------------------------------------------------------------------------------------------
Document 3362f9bc-991a-5dd5-b465-c564786ce19c:

1-1 I have a dog~

Metadata:{'source': 'fullhell.alchemist'}
----------------------------------------------------------------------------------------------------
Document a4d50169-2fda-5339-a196-249b5f54a0de:

1-2 I have a daugter~

Metadata:{'source': 'fullhell.alchemist'}
```
This is not correct. We should be able to expect that the vectorsotre
now includes doc1_1, doc1_2, and doc2, but not doc1_1, doc1_2, and
doc1_2.


# Reason
In `index`, the original code is 
```python
uids = []
docs_to_index = []
for doc, hashed_doc, doc_exists in zip(doc_batch, hashed_docs, exists_batch):
    if doc_exists:
        # Must be updated to refresh timestamp.
        record_manager.update([hashed_doc.uid], time_at_least=index_start_dt)
        num_skipped += 1
        continue
    uids.append(hashed_doc.uid)
    docs_to_index.append(doc)
```
In the aforementioned example, `len(doc_batch) == 4`, but
`len(hashed_docs) == len(exists_batch) == 3`. This is because the
deduplication of input documents [doc1_1, doc1_2, doc1_2, doc2] is
[doc1_1, doc1_2, doc2]. So `index` insert doc1_1, doc1_2, doc1_2 with
the uid of doc1_1, doc1_2, doc2.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
This commit is contained in:
Richard Wang 2023-09-23 10:41:07 +08:00 committed by GitHub
parent d67b120a41
commit b809c243af
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 41 additions and 2 deletions

View File

@ -282,14 +282,14 @@ def index(
# Filter out documents that already exist in the record store. # Filter out documents that already exist in the record store.
uids = [] uids = []
docs_to_index = [] docs_to_index = []
for doc, hashed_doc, doc_exists in zip(doc_batch, hashed_docs, exists_batch): for hashed_doc, doc_exists in zip(hashed_docs, exists_batch):
if doc_exists: if doc_exists:
# Must be updated to refresh timestamp. # Must be updated to refresh timestamp.
record_manager.update([hashed_doc.uid], time_at_least=index_start_dt) record_manager.update([hashed_doc.uid], time_at_least=index_start_dt)
num_skipped += 1 num_skipped += 1
continue continue
uids.append(hashed_doc.uid) uids.append(hashed_doc.uid)
docs_to_index.append(doc) docs_to_index.append(hashed_doc.to_document())
# Be pessimistic and assume that all vector store write will fail. # Be pessimistic and assume that all vector store write will fail.
# First write to vector store # First write to vector store

View File

@ -472,3 +472,42 @@ def test_deduplication(
"num_skipped": 0, "num_skipped": 0,
"num_updated": 0, "num_updated": 0,
} }
def test_deduplication_v2(
record_manager: SQLRecordManager, vector_store: VectorStore
) -> None:
"""Check edge case when loader returns no new docs."""
docs = [
Document(
page_content="1",
metadata={"source": "1"},
),
Document(
page_content="1",
metadata={"source": "1"},
),
Document(
page_content="2",
metadata={"source": "2"},
),
Document(
page_content="3",
metadata={"source": "3"},
),
]
# Should result in only a single document being added
assert index(docs, record_manager, vector_store, cleanup="full") == {
"num_added": 3,
"num_deleted": 0,
"num_skipped": 0,
"num_updated": 0,
}
# using in memory implementation here
assert isinstance(vector_store, InMemoryVectorStore)
contents = sorted(
[document.page_content for document in vector_store.store.values()]
)
assert contents == ["1", "2", "3"]