mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
Harrison/elastic search (#2419)
This commit is contained in:
parent
659c67e896
commit
af7f20fa42
@ -0,0 +1,164 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "ab66dd43",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# ElasticSearch BM25\n",
|
||||
"\n",
|
||||
"This notebook goes over how to use a retriever that under the hood uses ElasticSearcha and BM25.\n",
|
||||
"\n",
|
||||
"For more information on the details of BM25 see [this blog post](https://www.elastic.co/blog/practical-bm25-part-2-the-bm25-algorithm-and-its-variables)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "393ac030",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.retrievers import ElasticSearchBM25Retriever"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "aaf80e7f",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create New Retriever"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"id": "bcb3c8c2",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"elasticsearch_url=\"http://localhost:9200\"\n",
|
||||
"retriever = ElasticSearchBM25Retriever.create(elasticsearch_url, \"langchain-index-3\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"id": "b605284d",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Alternatively, you can load an existing index\n",
|
||||
"# import elasticsearch\n",
|
||||
"# elasticsearch_url=\"http://localhost:9200\"\n",
|
||||
"# retriever = ElasticSearchBM25Retriever(elasticsearch.Elasticsearch(elasticsearch_url), \"langchain-index\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "1c518c42",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Add texts (if necessary)\n",
|
||||
"\n",
|
||||
"We can optionally add texts to the retriever (if they aren't already in there)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"id": "98b1c017",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"['386c76c9-4355-4c12-aaeb-7b80054caf93',\n",
|
||||
" 'fffd279c-a0c9-4158-a904-6e242c517c99',\n",
|
||||
" '7f5528a3-18d0-43b0-894d-f6770a002219',\n",
|
||||
" 'e2ef5e32-d5bd-44e2-b045-cfc5a8e0a0a1',\n",
|
||||
" 'cce8ba48-e473-4235-bca2-2c8d65e73ccf']"
|
||||
]
|
||||
},
|
||||
"execution_count": 14,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"retriever.add_texts([\"foo\", \"bar\", \"world\", \"hello\", \"foo bar\"])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "08437fa2",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Use Retriever\n",
|
||||
"\n",
|
||||
"We can now use the retriever!"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"id": "c0455218",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"result = retriever.get_relevant_documents(\"foo\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"id": "7dfa5c29",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[Document(page_content='foo', metadata={}),\n",
|
||||
" Document(page_content='foo bar', metadata={})]"
|
||||
]
|
||||
},
|
||||
"execution_count": 16,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"result"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "74bd9256",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.1"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
@ -1,4 +1,5 @@
|
||||
from langchain.retrievers.chatgpt_plugin_retriever import ChatGPTPluginRetriever
|
||||
from langchain.retrievers.elastic_search_bm25 import ElasticSearchBM25Retriever
|
||||
from langchain.retrievers.metal import MetalRetriever
|
||||
from langchain.retrievers.pinecone_hybrid_search import PineconeHybridSearchRetriever
|
||||
from langchain.retrievers.remote_retriever import RemoteLangChainRetriever
|
||||
@ -8,4 +9,5 @@ __all__ = [
|
||||
"RemoteLangChainRetriever",
|
||||
"PineconeHybridSearchRetriever",
|
||||
"MetalRetriever",
|
||||
"ElasticSearchBM25Retriever",
|
||||
]
|
||||
|
126
langchain/retrievers/elastic_search_bm25.py
Normal file
126
langchain/retrievers/elastic_search_bm25.py
Normal file
@ -0,0 +1,126 @@
|
||||
"""Wrapper around Elasticsearch vector database."""
|
||||
from __future__ import annotations
|
||||
|
||||
import uuid
|
||||
from typing import Any, Iterable, List
|
||||
|
||||
from langchain.docstore.document import Document
|
||||
from langchain.schema import BaseRetriever
|
||||
|
||||
|
||||
class ElasticSearchBM25Retriever(BaseRetriever):
|
||||
"""Wrapper around Elasticsearch using BM25 as a retrieval method.
|
||||
|
||||
|
||||
To connect to an Elasticsearch instance that requires login credentials,
|
||||
including Elastic Cloud, use the Elasticsearch URL format
|
||||
https://username:password@es_host:9243. For example, to connect to Elastic
|
||||
Cloud, create the Elasticsearch URL with the required authentication details and
|
||||
pass it to the ElasticVectorSearch constructor as the named parameter
|
||||
elasticsearch_url.
|
||||
|
||||
You can obtain your Elastic Cloud URL and login credentials by logging in to the
|
||||
Elastic Cloud console at https://cloud.elastic.co, selecting your deployment, and
|
||||
navigating to the "Deployments" page.
|
||||
|
||||
To obtain your Elastic Cloud password for the default "elastic" user:
|
||||
|
||||
1. Log in to the Elastic Cloud console at https://cloud.elastic.co
|
||||
2. Go to "Security" > "Users"
|
||||
3. Locate the "elastic" user and click "Edit"
|
||||
4. Click "Reset password"
|
||||
5. Follow the prompts to reset the password
|
||||
|
||||
The format for Elastic Cloud URLs is
|
||||
https://username:password@cluster_id.region_id.gcp.cloud.es.io:9243.
|
||||
"""
|
||||
|
||||
def __init__(self, client: Any, index_name: str):
|
||||
self.client = client
|
||||
self.index_name = index_name
|
||||
|
||||
@classmethod
|
||||
def create(
|
||||
cls, elasticsearch_url: str, index_name: str, k1: float = 2.0, b: float = 0.75
|
||||
) -> ElasticSearchBM25Retriever:
|
||||
from elasticsearch import Elasticsearch
|
||||
|
||||
# Create an Elasticsearch client instance
|
||||
es = Elasticsearch(elasticsearch_url)
|
||||
|
||||
# Define the index settings and mappings
|
||||
index_settings = {
|
||||
"settings": {
|
||||
"analysis": {"analyzer": {"default": {"type": "standard"}}},
|
||||
"similarity": {
|
||||
"custom_bm25": {
|
||||
"type": "BM25",
|
||||
"k1": k1,
|
||||
"b": b,
|
||||
}
|
||||
},
|
||||
},
|
||||
"mappings": {
|
||||
"properties": {
|
||||
"content": {
|
||||
"type": "text",
|
||||
"similarity": "custom_bm25", # Use the custom BM25 similarity
|
||||
}
|
||||
}
|
||||
},
|
||||
}
|
||||
|
||||
# Create the index with the specified settings and mappings
|
||||
es.indices.create(index=index_name, body=index_settings)
|
||||
return cls(es, index_name)
|
||||
|
||||
def add_texts(
|
||||
self,
|
||||
texts: Iterable[str],
|
||||
refresh_indices: bool = True,
|
||||
) -> List[str]:
|
||||
"""Run more texts through the embeddings and add to the retriver.
|
||||
|
||||
Args:
|
||||
texts: Iterable of strings to add to the retriever.
|
||||
refresh_indices: bool to refresh ElasticSearch indices
|
||||
|
||||
Returns:
|
||||
List of ids from adding the texts into the retriever.
|
||||
"""
|
||||
try:
|
||||
from elasticsearch.helpers import bulk
|
||||
except ImportError:
|
||||
raise ValueError(
|
||||
"Could not import elasticsearch python package. "
|
||||
"Please install it with `pip install elasticsearch`."
|
||||
)
|
||||
requests = []
|
||||
ids = []
|
||||
for i, text in enumerate(texts):
|
||||
_id = str(uuid.uuid4())
|
||||
request = {
|
||||
"_op_type": "index",
|
||||
"_index": self.index_name,
|
||||
"content": text,
|
||||
"_id": _id,
|
||||
}
|
||||
ids.append(_id)
|
||||
requests.append(request)
|
||||
bulk(self.client, requests)
|
||||
|
||||
if refresh_indices:
|
||||
self.client.indices.refresh(index=self.index_name)
|
||||
return ids
|
||||
|
||||
def get_relevant_documents(self, query: str) -> List[Document]:
|
||||
query_dict = {"query": {"match": {"content": query}}}
|
||||
res = self.client.search(index=self.index_name, body=query_dict)
|
||||
|
||||
docs = []
|
||||
for r in res["hits"]["hits"]:
|
||||
docs.append(Document(page_content=r["_source"]["content"]))
|
||||
return docs
|
||||
|
||||
async def aget_relevant_documents(self, query: str) -> List[Document]:
|
||||
raise NotImplementedError
|
Loading…
Reference in New Issue
Block a user