Add embeddings for LocalAI (#8134)

Description:

This PR adds embeddings for LocalAI (
https://github.com/go-skynet/LocalAI ), a self-hosted OpenAI drop-in
replacement. As LocalAI can re-use OpenAI clients it is mostly following
the lines of the OpenAI embeddings, however when embedding documents, it
just uses string instead of sending tokens as sending tokens is
best-effort depending on the model being used in LocalAI. Sending tokens
is also tricky as token id's can mismatch with the model - so it's safer
to just send strings in this case.

Partly related to: https://github.com/hwchase17/langchain/issues/5256

Dependencies: No new dependencies

Twitter: @mudler_it
---------

Signed-off-by: mudler <mudler@localai.io>
Co-authored-by: Bagatur <baskaryan@gmail.com>
This commit is contained in:
Ettore Di Giacinto 2023-07-24 21:16:49 +02:00 committed by GitHub
parent d983046f90
commit ae28568e2a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 508 additions and 0 deletions

View File

@ -0,0 +1,161 @@
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"id": "278b6c63",
"metadata": {},
"source": [
"# LocalAI\n",
"\n",
"Let's load the LocalAI Embedding class. In order to use the LocalAI Embedding class, you need to have the LocalAI service hosted somewhere and configure the embedding models. See the documentation at https://localai.io/basics/getting_started/index.html and https://localai.io/features/embeddings/index.html."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "0be1af71",
"metadata": {},
"outputs": [],
"source": [
"from langchain.embeddings import LocalAIEmbeddings"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "2c66e5da",
"metadata": {},
"outputs": [],
"source": [
"embeddings = LocalAIEmbeddings(openai_api_base=\"http://localhost:8080\", model=\"embedding-model-name\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "01370375",
"metadata": {},
"outputs": [],
"source": [
"text = \"This is a test document.\""
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "bfb6142c",
"metadata": {},
"outputs": [],
"source": [
"query_result = embeddings.embed_query(text)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "0356c3b7",
"metadata": {},
"outputs": [],
"source": [
"doc_result = embeddings.embed_documents([text])"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "bb61bbeb",
"metadata": {},
"source": [
"Let's load the LocalAI Embedding class with first generation models (e.g. text-search-ada-doc-001/text-search-ada-query-001). Note: These are not recommended models - see [here](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c0b072cc",
"metadata": {},
"outputs": [],
"source": [
"from langchain.embeddings.openai import LocalAIEmbeddings"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a56b70f5",
"metadata": {},
"outputs": [],
"source": [
"embeddings = LocalAIEmbeddings(openai_api_base=\"http://localhost:8080\", model=\"embedding-model-name\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "14aefb64",
"metadata": {},
"outputs": [],
"source": [
"text = \"This is a test document.\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3c39ed33",
"metadata": {},
"outputs": [],
"source": [
"query_result = embeddings.embed_query(text)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e3221db6",
"metadata": {},
"outputs": [],
"source": [
"doc_result = embeddings.embed_documents([text])"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "aaad49f8",
"metadata": {},
"outputs": [],
"source": [
"# if you are behind an explicit proxy, you can use the OPENAI_PROXY environment variable to pass through\n",
"os.environ[\"OPENAI_PROXY\"] = \"http://proxy.yourcompany.com:8080\""
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.11.1 64-bit",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.1"
},
"vscode": {
"interpreter": {
"hash": "e971737741ff4ec9aff7dc6155a1060a59a8a6d52c757dbbe66bf8ee389494b1"
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -23,6 +23,7 @@ from langchain.embeddings.huggingface import (
from langchain.embeddings.huggingface_hub import HuggingFaceHubEmbeddings from langchain.embeddings.huggingface_hub import HuggingFaceHubEmbeddings
from langchain.embeddings.jina import JinaEmbeddings from langchain.embeddings.jina import JinaEmbeddings
from langchain.embeddings.llamacpp import LlamaCppEmbeddings from langchain.embeddings.llamacpp import LlamaCppEmbeddings
from langchain.embeddings.localai import LocalAIEmbeddings
from langchain.embeddings.minimax import MiniMaxEmbeddings from langchain.embeddings.minimax import MiniMaxEmbeddings
from langchain.embeddings.mlflow_gateway import MlflowAIGatewayEmbeddings from langchain.embeddings.mlflow_gateway import MlflowAIGatewayEmbeddings
from langchain.embeddings.modelscope_hub import ModelScopeEmbeddings from langchain.embeddings.modelscope_hub import ModelScopeEmbeddings
@ -76,6 +77,7 @@ __all__ = [
"SpacyEmbeddings", "SpacyEmbeddings",
"NLPCloudEmbeddings", "NLPCloudEmbeddings",
"GPT4AllEmbeddings", "GPT4AllEmbeddings",
"LocalAIEmbeddings",
] ]

View File

@ -0,0 +1,345 @@
from __future__ import annotations
import logging
import warnings
from typing import (
Any,
Callable,
Dict,
List,
Literal,
Optional,
Sequence,
Set,
Tuple,
Union,
)
from pydantic import BaseModel, Extra, Field, root_validator
from tenacity import (
AsyncRetrying,
before_sleep_log,
retry,
retry_if_exception_type,
stop_after_attempt,
wait_exponential,
)
from langchain.embeddings.base import Embeddings
from langchain.utils import get_from_dict_or_env, get_pydantic_field_names
logger = logging.getLogger(__name__)
def _create_retry_decorator(embeddings: LocalAIEmbeddings) -> Callable[[Any], Any]:
import openai
min_seconds = 4
max_seconds = 10
# Wait 2^x * 1 second between each retry starting with
# 4 seconds, then up to 10 seconds, then 10 seconds afterwards
return retry(
reraise=True,
stop=stop_after_attempt(embeddings.max_retries),
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
retry=(
retry_if_exception_type(openai.error.Timeout)
| retry_if_exception_type(openai.error.APIError)
| retry_if_exception_type(openai.error.APIConnectionError)
| retry_if_exception_type(openai.error.RateLimitError)
| retry_if_exception_type(openai.error.ServiceUnavailableError)
),
before_sleep=before_sleep_log(logger, logging.WARNING),
)
def _async_retry_decorator(embeddings: LocalAIEmbeddings) -> Any:
import openai
min_seconds = 4
max_seconds = 10
# Wait 2^x * 1 second between each retry starting with
# 4 seconds, then up to 10 seconds, then 10 seconds afterwards
async_retrying = AsyncRetrying(
reraise=True,
stop=stop_after_attempt(embeddings.max_retries),
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
retry=(
retry_if_exception_type(openai.error.Timeout)
| retry_if_exception_type(openai.error.APIError)
| retry_if_exception_type(openai.error.APIConnectionError)
| retry_if_exception_type(openai.error.RateLimitError)
| retry_if_exception_type(openai.error.ServiceUnavailableError)
),
before_sleep=before_sleep_log(logger, logging.WARNING),
)
def wrap(func: Callable) -> Callable:
async def wrapped_f(*args: Any, **kwargs: Any) -> Callable:
async for _ in async_retrying:
return await func(*args, **kwargs)
raise AssertionError("this is unreachable")
return wrapped_f
return wrap
# https://stackoverflow.com/questions/76469415/getting-embeddings-of-length-1-from-langchain-openaiembeddings
def _check_response(response: dict) -> dict:
if any(len(d["embedding"]) == 1 for d in response["data"]):
import openai
raise openai.error.APIError("LocalAI API returned an empty embedding")
return response
def embed_with_retry(embeddings: LocalAIEmbeddings, **kwargs: Any) -> Any:
"""Use tenacity to retry the embedding call."""
retry_decorator = _create_retry_decorator(embeddings)
@retry_decorator
def _embed_with_retry(**kwargs: Any) -> Any:
response = embeddings.client.create(**kwargs)
return _check_response(response)
return _embed_with_retry(**kwargs)
async def async_embed_with_retry(embeddings: LocalAIEmbeddings, **kwargs: Any) -> Any:
"""Use tenacity to retry the embedding call."""
@_async_retry_decorator(embeddings)
async def _async_embed_with_retry(**kwargs: Any) -> Any:
response = await embeddings.client.acreate(**kwargs)
return _check_response(response)
return await _async_embed_with_retry(**kwargs)
class LocalAIEmbeddings(BaseModel, Embeddings):
"""LocalAI embedding models.
To use, you should have the ``openai`` python package installed, and the
environment variable ``OPENAI_API_KEY`` set to a random string. You need to
specify ``OPENAI_API_BASE`` to point to your LocalAI service endpoint.
Example:
.. code-block:: python
from langchain.embeddings import LocalAIEmbeddings
openai = LocalAIEmbeddings(
openai_api_key="random-key",
openai_api_base="http://localhost:8080"
)
"""
client: Any #: :meta private:
model: str = "text-embedding-ada-002"
deployment: str = model
openai_api_version: Optional[str] = None
openai_api_base: Optional[str] = None
# to support explicit proxy for LocalAI
openai_proxy: Optional[str] = None
embedding_ctx_length: int = 8191
"""The maximum number of tokens to embed at once."""
openai_api_key: Optional[str] = None
openai_organization: Optional[str] = None
allowed_special: Union[Literal["all"], Set[str]] = set()
disallowed_special: Union[Literal["all"], Set[str], Sequence[str]] = "all"
chunk_size: int = 1000
"""Maximum number of texts to embed in each batch"""
max_retries: int = 6
"""Maximum number of retries to make when generating."""
request_timeout: Optional[Union[float, Tuple[float, float]]] = None
"""Timeout in seconds for the LocalAI request."""
headers: Any = None
show_progress_bar: bool = False
"""Whether to show a progress bar when embedding."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Holds any model parameters valid for `create` call not explicitly specified."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator(pre=True)
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
"""Build extra kwargs from additional params that were passed in."""
all_required_field_names = get_pydantic_field_names(cls)
extra = values.get("model_kwargs", {})
for field_name in list(values):
if field_name in extra:
raise ValueError(f"Found {field_name} supplied twice.")
if field_name not in all_required_field_names:
warnings.warn(
f"""WARNING! {field_name} is not default parameter.
{field_name} was transferred to model_kwargs.
Please confirm that {field_name} is what you intended."""
)
extra[field_name] = values.pop(field_name)
invalid_model_kwargs = all_required_field_names.intersection(extra.keys())
if invalid_model_kwargs:
raise ValueError(
f"Parameters {invalid_model_kwargs} should be specified explicitly. "
f"Instead they were passed in as part of `model_kwargs` parameter."
)
values["model_kwargs"] = extra
return values
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
values["openai_api_key"] = get_from_dict_or_env(
values, "openai_api_key", "OPENAI_API_KEY"
)
values["openai_api_base"] = get_from_dict_or_env(
values,
"openai_api_base",
"OPENAI_API_BASE",
default="",
)
values["openai_proxy"] = get_from_dict_or_env(
values,
"openai_proxy",
"OPENAI_PROXY",
default="",
)
default_api_version = ""
values["openai_api_version"] = get_from_dict_or_env(
values,
"openai_api_version",
"OPENAI_API_VERSION",
default=default_api_version,
)
values["openai_organization"] = get_from_dict_or_env(
values,
"openai_organization",
"OPENAI_ORGANIZATION",
default="",
)
try:
import openai
values["client"] = openai.Embedding
except ImportError:
raise ImportError(
"Could not import openai python package. "
"Please install it with `pip install openai`."
)
return values
@property
def _invocation_params(self) -> Dict:
openai_args = {
"model": self.model,
"request_timeout": self.request_timeout,
"headers": self.headers,
"api_key": self.openai_api_key,
"organization": self.openai_organization,
"api_base": self.openai_api_base,
"api_version": self.openai_api_version,
**self.model_kwargs,
}
if self.openai_proxy:
import openai
openai.proxy = {
"http": self.openai_proxy,
"https": self.openai_proxy,
} # type: ignore[assignment] # noqa: E501
return openai_args
def _embedding_func(self, text: str, *, engine: str) -> List[float]:
"""Call out to LocalAI's embedding endpoint."""
# handle large input text
if self.model.endswith("001"):
# See: https://github.com/openai/openai-python/issues/418#issuecomment-1525939500
# replace newlines, which can negatively affect performance.
text = text.replace("\n", " ")
return embed_with_retry(
self,
input=[text],
**self._invocation_params,
)["data"][
0
]["embedding"]
async def _aembedding_func(self, text: str, *, engine: str) -> List[float]:
"""Call out to LocalAI's embedding endpoint."""
# handle large input text
if self.model.endswith("001"):
# See: https://github.com/openai/openai-python/issues/418#issuecomment-1525939500
# replace newlines, which can negatively affect performance.
text = text.replace("\n", " ")
return (
await async_embed_with_retry(
self,
input=[text],
**self._invocation_params,
)
)["data"][0]["embedding"]
def embed_documents(
self, texts: List[str], chunk_size: Optional[int] = 0
) -> List[List[float]]:
"""Call out to LocalAI's embedding endpoint for embedding search docs.
Args:
texts: The list of texts to embed.
chunk_size: The chunk size of embeddings. If None, will use the chunk size
specified by the class.
Returns:
List of embeddings, one for each text.
"""
# call _embedding_func for each text
return [self._embedding_func(text, engine=self.deployment) for text in texts]
async def aembed_documents(
self, texts: List[str], chunk_size: Optional[int] = 0
) -> List[List[float]]:
"""Call out to LocalAI's embedding endpoint async for embedding search docs.
Args:
texts: The list of texts to embed.
chunk_size: The chunk size of embeddings. If None, will use the chunk size
specified by the class.
Returns:
List of embeddings, one for each text.
"""
embeddings = []
for text in texts:
response = await self._aembedding_func(text, engine=self.deployment)
embeddings.append(response)
return embeddings
def embed_query(self, text: str) -> List[float]:
"""Call out to LocalAI's embedding endpoint for embedding query text.
Args:
text: The text to embed.
Returns:
Embedding for the text.
"""
embedding = self._embedding_func(text, engine=self.deployment)
return embedding
async def aembed_query(self, text: str) -> List[float]:
"""Call out to LocalAI's embedding endpoint async for embedding query text.
Args:
text: The text to embed.
Returns:
Embedding for the text.
"""
embedding = await self._aembedding_func(text, engine=self.deployment)
return embedding