diff --git a/README.md b/README.md
index 3ae4cd78e7..1e3e34f826 100644
--- a/README.md
+++ b/README.md
@@ -107,7 +107,7 @@ but full API docs can be found [here](https://langchain.readthedocs.io/en/latest
## 🤖 Developer Guide
To begin developing on this project, first clone to the repo locally.
-To install requirements, run `pip install -r requirments.txt`.
+To install requirements, run `pip install -r requirements.txt`.
This will install all requirements for running the package, examples, linting, formatting, and tests.
Formatting for this project is a combination of [Black](https://black.readthedocs.io/en/stable/) and [isort](https://pycqa.github.io/isort/).
@@ -125,6 +125,8 @@ Integration tests cover logic that requires making calls to outside APIs (often
To run integration tests, run `make integration_tests`.
If you add support for a new external API, please add a new integration test.
+If you are adding a Jupyter notebook example, you can run `pip install -e .` to build the langchain package from your local changes, so your new logic can be imported into the notebook.
+
Docs are largely autogenerated by [sphinx](https://www.sphinx-doc.org/en/master/) from the code.
For that reason, we ask that you add good documentation to all classes and methods.
Similar to linting, we recognize documentation can be annoying - if you do not want to do it, please contact a project maintainer and they can help you with it. We do not want this to be a blocker for good code getting contributed.
diff --git a/examples/generate_examples.ipynb b/examples/generate_examples.ipynb
new file mode 100644
index 0000000000..2c334ba0b7
--- /dev/null
+++ b/examples/generate_examples.ipynb
@@ -0,0 +1,121 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "1685fa2f",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from langchain.chains.react.prompt import EXAMPLES\n",
+ "from langchain.llms.openai import OpenAI\n",
+ "from langchain.example_generator import generate_example, generate_example_from_dynamic_prompt"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "334ef4f7",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "'Question: What is the elevation range for the area that the eastern sector of the\\nColorado orogeny extends into?\\nThought 1: I need to search Colorado orogeny, find the area that the eastern sector\\nof the Colorado orogeny extends into, then find the elevation range of the\\narea.\\nAction 1: Search[Colorado orogeny]\\nObservation 1: The Colorado orogeny was an episode of mountain building (an orogeny) in\\nColorado and surrounding areas.\\nThought 2: It does not mention the eastern sector. So I need to look up eastern\\nsector.\\nAction 2: Lookup[eastern sector]\\nObservation 2: (Result 1 / 1) The eastern sector extends into the High Plains and is called\\nthe Central Plains orogeny.\\nThought 3: The eastern sector of Colorado orogeny extends into the High Plains. So I\\nneed to search High Plains and find its elevation range.\\nAction 3: Search[High Plains]\\nObservation 3: High Plains refers to one of two distinct land regions\\nThought 4: I need to instead search High Plains (United States).\\nAction 4: Search[High Plains (United States)]\\nObservation 4: The High Plains are a subregion of the Great Plains. From east to west, the\\nHigh Plains rise in elevation from around 1,800 to 7,000 ft (550 to 2,130\\nm).[3]\\nThought 5: High Plains rise in elevation from around 1,800 to 7,000 ft, so the answer\\nis 1,800 to 7,000 ft.\\nAction 5: Finish[1,800 to 7,000 ft]'"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# print initial example for visibility\n",
+ "EXAMPLES[0]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "a7bd36bc",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "new_example = generate_example(EXAMPLES, OpenAI())"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "e1efb008",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "['',\n",
+ " '',\n",
+ " 'Question: Is the Mount Everest taller than the Mount Kilimanjaro?',\n",
+ " '',\n",
+ " 'Thought 1: I need to search Mount Everest and Mount Kilimanjaro, find their',\n",
+ " 'heights, then compare them.',\n",
+ " '',\n",
+ " 'Action 1: Search[Mount Everest]',\n",
+ " '',\n",
+ " \"Observation 1: Mount Everest, at 8,848 metres (29,029 ft), is the world's highest mountain\",\n",
+ " 'and a particularly popular goal for mountaineers.',\n",
+ " '',\n",
+ " 'Thought 2: Mount Everest is 8,848 metres tall. I need to search Mount Kilimanjaro',\n",
+ " 'next.',\n",
+ " '',\n",
+ " 'Action 2: Search[Mount Kilimanjaro]',\n",
+ " '',\n",
+ " 'Observation 2: Mount Kilimanjaro, with its three volcanic cones, Kibo, Mawenzi, and',\n",
+ " 'Shira, is a freestanding mountain in Tanzania. It is the highest mountain in',\n",
+ " 'Africa, and rises approximately 4,900 metres (16,100 ft) from its base to 5,895',\n",
+ " 'metres (19,341 ft) above sea level.',\n",
+ " '',\n",
+ " 'Thought 3: Mount Kilimanjaro is 5,895 metres tall. 8,848 metres (Mount Everest) >',\n",
+ " '5,895 metres (Mount Kil']"
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "new_example.split('\\n')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "d8843d7b",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.4"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/langchain/__init__.py b/langchain/__init__.py
index 66e4fe03c7..847681709a 100644
--- a/langchain/__init__.py
+++ b/langchain/__init__.py
@@ -18,7 +18,7 @@ from langchain.chains import (
from langchain.docstore import Wikipedia
from langchain.faiss import FAISS
from langchain.llms import Cohere, HuggingFaceHub, OpenAI
-from langchain.prompt import BasePrompt, DynamicPrompt, Prompt
+from langchain.prompts import BasePrompt, DynamicPrompt, Prompt
from langchain.sql_database import SQLDatabase
__all__ = [
diff --git a/langchain/chains/llm.py b/langchain/chains/llm.py
index 9dadf9ef13..c73db42e90 100644
--- a/langchain/chains/llm.py
+++ b/langchain/chains/llm.py
@@ -5,7 +5,7 @@ from pydantic import BaseModel, Extra
from langchain.chains.base import Chain
from langchain.llms.base import LLM
-from langchain.prompt import BasePrompt
+from langchain.prompts.base import BasePrompt
class LLMChain(Chain, BaseModel):
diff --git a/langchain/chains/llm_math/prompt.py b/langchain/chains/llm_math/prompt.py
index a5614b3afd..b389e91737 100644
--- a/langchain/chains/llm_math/prompt.py
+++ b/langchain/chains/llm_math/prompt.py
@@ -1,5 +1,5 @@
# flake8: noqa
-from langchain.prompt import Prompt
+from langchain.prompts.prompt import Prompt
_PROMPT_TEMPLATE = """You are GPT-3, and you can't do math.
diff --git a/langchain/chains/mapreduce.py b/langchain/chains/mapreduce.py
index 5ba2a1dcd7..26674442f9 100644
--- a/langchain/chains/mapreduce.py
+++ b/langchain/chains/mapreduce.py
@@ -11,7 +11,7 @@ from pydantic import BaseModel, Extra
from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain.llms.base import LLM
-from langchain.prompt import BasePrompt
+from langchain.prompts.base import BasePrompt
from langchain.text_splitter import TextSplitter
diff --git a/langchain/chains/natbot/prompt.py b/langchain/chains/natbot/prompt.py
index 390a532ddd..f67775b0a4 100644
--- a/langchain/chains/natbot/prompt.py
+++ b/langchain/chains/natbot/prompt.py
@@ -1,5 +1,5 @@
# flake8: noqa
-from langchain.prompt import Prompt
+from langchain.prompts.prompt import Prompt
_PROMPT_TEMPLATE = """
You are an agent controlling a browser. You are given:
@@ -30,7 +30,7 @@ Based on your given objective, issue whatever command you believe will get you c
You always start on Google; you should submit a search query to Google that will take you to the best page for
achieving your objective. And then interact with that page to achieve your objective.
-If you find yourself on Google and there are no search results displayed yet, you should probably issue a command
+If you find yourself on Google and there are no search results displayed yet, you should probably issue a command
like "TYPESUBMIT 7 "search query"" to get to a more useful page.
Then, if you find yourself on a Google search results page, you might issue the command "CLICK 24" to click
@@ -66,7 +66,7 @@ CURRENT BROWSER CONTENT:
------------------
OBJECTIVE: Find a 2 bedroom house for sale in Anchorage AK for under $750k
CURRENT URL: https://www.google.com/
-YOUR COMMAND:
+YOUR COMMAND:
TYPESUBMIT 8 "anchorage redfin"
==================================================
@@ -95,7 +95,7 @@ CURRENT BROWSER CONTENT:
------------------
OBJECTIVE: Make a reservation for 4 at Dorsia at 8pm
CURRENT URL: https://www.google.com/
-YOUR COMMAND:
+YOUR COMMAND:
TYPESUBMIT 8 "dorsia nyc opentable"
==================================================
@@ -114,15 +114,15 @@ CURRENT BROWSER CONTENT:
Sep 28, 20227:00 PM2 people
-
+
-It looks like you're in Peninsula. Not correct?
+It looks like you're in Peninsula. Not correct?
------------------
OBJECTIVE: Make a reservation for 4 for dinner at Dorsia in New York City at 8pm
CURRENT URL: https://www.opentable.com/
-YOUR COMMAND:
+YOUR COMMAND:
TYPESUBMIT 12 "dorsia new york city"
==================================================
diff --git a/langchain/chains/react/prompt.py b/langchain/chains/react/prompt.py
index 486d652c8a..e0e16299f8 100644
--- a/langchain/chains/react/prompt.py
+++ b/langchain/chains/react/prompt.py
@@ -1,5 +1,5 @@
# flake8: noqa
-from langchain.prompt import Prompt
+from langchain.prompts.prompt import Prompt
EXAMPLES = [
"""Question: What is the elevation range for the area that the eastern sector of the
diff --git a/langchain/chains/self_ask_with_search/prompt.py b/langchain/chains/self_ask_with_search/prompt.py
index cb52d3c818..003e68dd7f 100644
--- a/langchain/chains/self_ask_with_search/prompt.py
+++ b/langchain/chains/self_ask_with_search/prompt.py
@@ -1,5 +1,5 @@
# flake8: noqa
-from langchain.prompt import Prompt
+from langchain.prompts.prompt import Prompt
_DEFAULT_TEMPLATE = """Question: Who lived longer, Muhammad Ali or Alan Turing?
Are follow up questions needed here: Yes.
diff --git a/langchain/chains/sql_database/prompt.py b/langchain/chains/sql_database/prompt.py
index 36d48d74e4..c35c92e4b5 100644
--- a/langchain/chains/sql_database/prompt.py
+++ b/langchain/chains/sql_database/prompt.py
@@ -1,7 +1,7 @@
# flake8: noqa
-from langchain.prompt import Prompt
+from langchain.prompts.prompt import Prompt
-_DEFAULT_TEMPLATE = """Given an input question, first create a syntactically correct {dialect} query to run, then look at the results of the query and return the answer.
+_DEFAULT_TEMPLATE = """Given an input question, first create a syntactically correct {dialect} query to run, then look at the results of the query and return the answer.
Use the following format:
Question: "Question here"
diff --git a/langchain/example_generator.py b/langchain/example_generator.py
new file mode 100644
index 0000000000..818a848a71
--- /dev/null
+++ b/langchain/example_generator.py
@@ -0,0 +1,20 @@
+"""Utility functions for working with prompts."""
+from typing import List
+
+from langchain.chains.llm import LLMChain
+from langchain.llms.base import LLM
+from langchain.prompts.dynamic import DynamicPrompt
+
+TEST_GEN_TEMPLATE_SUFFIX = "Add another example."
+
+
+def generate_example(examples: List[str], llm: LLM) -> str:
+ """Return another example given a list of examples for a prompt."""
+ prompt = DynamicPrompt(examples=examples, suffix=TEST_GEN_TEMPLATE_SUFFIX)
+ chain = LLMChain(llm=llm, prompt=prompt)
+ return chain.predict()
+
+
+def generate_example_from_dynamic_prompt(prompt: DynamicPrompt, llm: LLM) -> str:
+ """Return another example given a DynamicPrompt object."""
+ return generate_example(prompt.examples, llm)
diff --git a/langchain/prompt.py b/langchain/prompt.py
deleted file mode 100644
index ac63eb1609..0000000000
--- a/langchain/prompt.py
+++ /dev/null
@@ -1,234 +0,0 @@
-"""Prompt schema definition."""
-import re
-from abc import ABC, abstractmethod
-from typing import Any, Callable, Dict, List
-
-from pydantic import BaseModel, Extra, root_validator
-
-from langchain.formatting import formatter
-
-_FORMATTER_MAPPING = {
- "f-string": formatter.format,
-}
-
-
-class BasePrompt(ABC):
- """Base prompt should expose the format method, returning a prompt."""
-
- input_variables: List[str]
- """A list of the names of the variables the prompt template expects."""
-
- @abstractmethod
- def format(self, **kwargs: Any) -> str:
- """Format the prompt with the inputs.
-
- Args:
- kwargs: Any arguments to be passed to the prompt template.
-
- Returns:
- A formatted string.
-
- Example:
-
- .. code-block:: python
-
- prompt.format(variable1="foo")
- """
-
-
-class Prompt(BaseModel, BasePrompt):
- """Schema to represent a prompt for an LLM.
-
- Example:
- .. code-block:: python
-
- from langchain import Prompt
- prompt = Prompt(input_variables=["foo"], template="Say {foo}")
- """
-
- input_variables: List[str]
- """A list of the names of the variables the prompt template expects."""
-
- template: str
- """The prompt template."""
-
- template_format: str = "f-string"
- """The format of the prompt template. Options are: 'f-string'."""
-
- class Config:
- """Configuration for this pydantic object."""
-
- extra = Extra.forbid
-
- def format(self, **kwargs: Any) -> str:
- """Format the prompt with the inputs.
-
- Args:
- kwargs: Any arguments to be passed to the prompt template.
-
- Returns:
- A formatted string.
-
- Example:
-
- .. code-block:: python
-
- prompt.format(variable1="foo")
- """
- return _FORMATTER_MAPPING[self.template_format](self.template, **kwargs)
-
- @root_validator()
- def template_is_valid(cls, values: Dict) -> Dict:
- """Check that template and input variables are consistent."""
- input_variables = values["input_variables"]
- template = values["template"]
- template_format = values["template_format"]
- if template_format not in _FORMATTER_MAPPING:
- valid_formats = list(_FORMATTER_MAPPING)
- raise ValueError(
- f"Invalid template format. Got `{template_format}`;"
- f" should be one of {valid_formats}"
- )
- dummy_inputs = {input_variable: "foo" for input_variable in input_variables}
- try:
- formatter_func = _FORMATTER_MAPPING[template_format]
- formatter_func(template, **dummy_inputs)
- except KeyError:
- raise ValueError("Invalid prompt schema.")
- return values
-
- @classmethod
- def from_examples(
- cls,
- examples: List[str],
- suffix: str,
- input_variables: List[str],
- example_separator: str = "\n\n",
- prefix: str = "",
- ) -> "Prompt":
- """Take examples in list format with prefix and suffix to create a prompt.
-
- Intended be used as a way to dynamically create a prompt from examples.
-
- Args:
- examples: List of examples to use in the prompt.
- suffix: String to go after the list of examples. Should generally
- set up the user's input.
- input_variables: A list of variable names the final prompt template
- will expect.
- example_separator: The seperator to use in between examples. Defaults
- to two new line characters.
- prefix: String that should go before any examples. Generally includes
- examples. Default to an empty string.
-
- Returns:
- The final prompt generated.
- """
- example_str = example_separator.join(examples)
- template = prefix + example_str + suffix
- return cls(input_variables=input_variables, template=template)
-
-
-class DynamicPrompt(BaseModel, BasePrompt):
- r"""Schema to represent a dynamic prompt for an LLM.
-
- Example:
- .. code-block:: python
-
- from langchain import DynamicPrompt
- dynamic_prompt = DynamicPrompt(
- examples=["Say hi. Hi", "Say ho. Ho"],
- example_separator="\n\n",
- prefix="",
- suffix="\n\nSay {foo}"
- input_variables=["foo"],
- max_length=200,
- get_text_length=word_count
- )
- """
-
- examples: List[str]
- """A list of the examples that the prompt template expects."""
-
- example_separator: str = "\n\n"
- """Example separator, e.g. \n\n, for the dynamic prompt creation."""
-
- input_variables: List[str]
- """A list of the names of the variables the prompt template expects."""
-
- prefix: str
- """Prefix for the prompt."""
-
- suffix: str
- """Suffix for the prompt."""
-
- template_format: str = "f-string"
- """The format of the prompt template. Options are: 'f-string'."""
-
- get_text_length: Callable[[str], int] = lambda x: len(re.split("\n| ", x))
- """Function to measure prompt length. Defaults to word count."""
-
- max_length: int = 2048
- """Max length for the prompt, beyond which examples are cut."""
-
- class Config:
- """Configuration for this pydantic object."""
-
- extra = Extra.forbid
-
- def template(self, example_list: List[str], **kwargs: Any) -> str:
- """Return template given example list."""
- template = self.example_separator.join(
- [self.prefix, *example_list, self.suffix]
- )
- return _FORMATTER_MAPPING[self.template_format](template, **kwargs)
-
- def format(self, **kwargs: Any) -> str:
- """Dynamically format the prompt with the inputs.
-
- Args:
- kwargs: Any arguments to be passed to the prompt template.
-
- Returns:
- A formatted string.
-
- Example:
-
- .. code-block:: python
-
- prompt.format(variable1="foo")
- """
- curr_examples = self.examples
- template = self.template(curr_examples, **kwargs)
- while self.get_text_length(template) > self.max_length and curr_examples:
- curr_examples = curr_examples[:-1]
- template = self.template(curr_examples, **kwargs)
- return template
-
- @root_validator()
- def template_is_valid(cls, values: Dict) -> Dict:
- """Check that prefix, suffix and input variables are consistent."""
- input_variables = values["input_variables"]
- suffix = values["suffix"]
- template_format = values["template_format"]
- if template_format not in _FORMATTER_MAPPING:
- valid_formats = list(_FORMATTER_MAPPING)
- raise ValueError(
- f"Invalid template format. Got `{template_format}`;"
- f" should be one of {valid_formats}"
- )
- try:
- result = values["get_text_length"]("foo")
- assert isinstance(result, int)
- except AssertionError:
- raise ValueError(
- "Invalid text length callable, must take string & return int;"
- )
- dummy_inputs = {input_variable: "foo" for input_variable in input_variables}
- # TODO variables could be in prefix or suffix
- try:
- formatter_func = _FORMATTER_MAPPING[template_format]
- formatter_func(suffix, **dummy_inputs)
- except KeyError:
- raise ValueError("Invalid prompt schema.")
- return values
diff --git a/langchain/prompts/__init__.py b/langchain/prompts/__init__.py
new file mode 100644
index 0000000000..177aa15506
--- /dev/null
+++ b/langchain/prompts/__init__.py
@@ -0,0 +1,6 @@
+"""Prompt template classes."""
+from langchain.prompts.base import BasePrompt
+from langchain.prompts.dynamic import DynamicPrompt
+from langchain.prompts.prompt import Prompt
+
+__all__ = ["BasePrompt", "Prompt", "DynamicPrompt"]
diff --git a/langchain/prompts/base.py b/langchain/prompts/base.py
new file mode 100644
index 0000000000..d99d940053
--- /dev/null
+++ b/langchain/prompts/base.py
@@ -0,0 +1,33 @@
+"""BasePrompt schema definition."""
+from abc import ABC, abstractmethod
+from typing import Any, List
+
+from langchain.formatting import formatter
+
+DEFAULT_FORMATTER_MAPPING = {
+ "f-string": formatter.format,
+}
+
+
+class BasePrompt(ABC):
+ """Base prompt should expose the format method, returning a prompt."""
+
+ input_variables: List[str]
+ """A list of the names of the variables the prompt template expects."""
+
+ @abstractmethod
+ def format(self, **kwargs: Any) -> str:
+ """Format the prompt with the inputs.
+
+ Args:
+ kwargs: Any arguments to be passed to the prompt template.
+
+ Returns:
+ A formatted string.
+
+ Example:
+
+ .. code-block:: python
+
+ prompt.format(variable1="foo")
+ """
diff --git a/langchain/prompts/dynamic.py b/langchain/prompts/dynamic.py
new file mode 100644
index 0000000000..fbf0c35135
--- /dev/null
+++ b/langchain/prompts/dynamic.py
@@ -0,0 +1,112 @@
+"""Dynamic prompt schema definition."""
+import re
+from typing import Any, Callable, Dict, List
+
+from pydantic import BaseModel, Extra, root_validator
+
+from langchain.prompts.base import DEFAULT_FORMATTER_MAPPING, BasePrompt
+
+
+class DynamicPrompt(BaseModel, BasePrompt):
+ r"""Schema to represent a dynamic prompt for an LLM.
+
+ Example:
+ .. code-block:: python
+
+ from langchain import DynamicPrompt
+ dynamic_prompt = DynamicPrompt(
+ examples=["Say hi. Hi", "Say ho. Ho"],
+ example_separator="\n\n",
+ prefix="",
+ suffix="\n\nSay {foo}"
+ input_variables=["foo"],
+ max_length=200,
+ get_text_length=word_count
+ )
+ """
+
+ examples: List[str]
+ """A list of the examples that the prompt template expects."""
+
+ example_separator: str = "\n\n"
+ """Example separator, e.g. \n\n, for the dynamic prompt creation."""
+
+ input_variables: List[str] = []
+ """A list of the names of the variables the prompt template expects."""
+
+ prefix: str = ""
+ """Prefix for the prompt."""
+
+ suffix: str = ""
+ """Suffix for the prompt."""
+
+ template_format: str = "f-string"
+ """The format of the prompt template. Options are: 'f-string'."""
+
+ get_text_length: Callable[[str], int] = lambda x: len(re.split("\n| ", x))
+ """Function to measure prompt length. Defaults to word count."""
+
+ max_length: int = 2048
+ """Max length for the prompt, beyond which examples are cut."""
+
+ class Config:
+ """Configuration for this pydantic object."""
+
+ extra = Extra.forbid
+
+ def template(self, example_list: List[str], **kwargs: Any) -> str:
+ """Return template given example list."""
+ template = self.example_separator.join(
+ [self.prefix, *example_list, self.suffix]
+ )
+ return DEFAULT_FORMATTER_MAPPING[self.template_format](template, **kwargs)
+
+ def format(self, **kwargs: Any) -> str:
+ """Dynamically format the prompt with the inputs.
+
+ Args:
+ kwargs: Any arguments to be passed to the prompt template.
+
+ Returns:
+ A formatted string.
+
+ Example:
+
+ .. code-block:: python
+
+ prompt.format(variable1="foo")
+ """
+ curr_examples = self.examples
+ template = self.template(curr_examples, **kwargs)
+ while self.get_text_length(template) > self.max_length and curr_examples:
+ curr_examples = curr_examples[:-1]
+ template = self.template(curr_examples, **kwargs)
+ return template
+
+ @root_validator()
+ def template_is_valid(cls, values: Dict) -> Dict:
+ """Check that prefix, suffix and input variables are consistent."""
+ input_variables = values["input_variables"]
+ prefix = values["prefix"]
+ suffix = values["suffix"]
+ template_format = values["template_format"]
+ if template_format not in DEFAULT_FORMATTER_MAPPING:
+ valid_formats = list(DEFAULT_FORMATTER_MAPPING)
+ raise ValueError(
+ f"Invalid template format. Got `{template_format}`;"
+ f" should be one of {valid_formats}"
+ )
+ try:
+ result = values["get_text_length"]("foo")
+ assert isinstance(result, int)
+ except AssertionError:
+ raise ValueError(
+ "Invalid text length callable, must take string & return int;"
+ )
+ dummy_inputs = {input_variable: "foo" for input_variable in input_variables}
+ try:
+ formatter_func = DEFAULT_FORMATTER_MAPPING[template_format]
+ formatter_func(prefix + suffix, **dummy_inputs)
+ except KeyError:
+ raise ValueError("Invalid prompt schema.")
+ return values
diff --git a/langchain/prompts/prompt.py b/langchain/prompts/prompt.py
new file mode 100644
index 0000000000..02f87b7700
--- /dev/null
+++ b/langchain/prompts/prompt.py
@@ -0,0 +1,99 @@
+"""Prompt schema definition."""
+from typing import Any, Dict, List
+
+from pydantic import BaseModel, Extra, root_validator
+
+from langchain.prompts.base import DEFAULT_FORMATTER_MAPPING, BasePrompt
+
+
+class Prompt(BaseModel, BasePrompt):
+ """Schema to represent a prompt for an LLM.
+
+ Example:
+ .. code-block:: python
+
+ from langchain import Prompt
+ prompt = Prompt(input_variables=["foo"], template="Say {foo}")
+ """
+
+ input_variables: List[str]
+ """A list of the names of the variables the prompt template expects."""
+
+ template: str
+ """The prompt template."""
+
+ template_format: str = "f-string"
+ """The format of the prompt template. Options are: 'f-string'."""
+
+ class Config:
+ """Configuration for this pydantic object."""
+
+ extra = Extra.forbid
+
+ def format(self, **kwargs: Any) -> str:
+ """Format the prompt with the inputs.
+
+ Args:
+ kwargs: Any arguments to be passed to the prompt template.
+
+ Returns:
+ A formatted string.
+
+ Example:
+
+ .. code-block:: python
+
+ prompt.format(variable1="foo")
+ """
+ return DEFAULT_FORMATTER_MAPPING[self.template_format](self.template, **kwargs)
+
+ @root_validator()
+ def template_is_valid(cls, values: Dict) -> Dict:
+ """Check that template and input variables are consistent."""
+ input_variables = values["input_variables"]
+ template = values["template"]
+ template_format = values["template_format"]
+ if template_format not in DEFAULT_FORMATTER_MAPPING:
+ valid_formats = list(DEFAULT_FORMATTER_MAPPING)
+ raise ValueError(
+ f"Invalid template format. Got `{template_format}`;"
+ f" should be one of {valid_formats}"
+ )
+ dummy_inputs = {input_variable: "foo" for input_variable in input_variables}
+ try:
+ formatter_func = DEFAULT_FORMATTER_MAPPING[template_format]
+ formatter_func(template, **dummy_inputs)
+ except KeyError:
+ raise ValueError("Invalid prompt schema.")
+ return values
+
+ @classmethod
+ def from_examples(
+ cls,
+ examples: List[str],
+ suffix: str,
+ input_variables: List[str],
+ example_separator: str = "\n\n",
+ prefix: str = "",
+ ) -> "Prompt":
+ """Take examples in list format with prefix and suffix to create a prompt.
+
+ Intended be used as a way to dynamically create a prompt from examples.
+
+ Args:
+ examples: List of examples to use in the prompt.
+ suffix: String to go after the list of examples. Should generally
+ set up the user's input.
+ input_variables: A list of variable names the final prompt template
+ will expect.
+ example_separator: The seperator to use in between examples. Defaults
+ to two new line characters.
+ prefix: String that should go before any examples. Generally includes
+ examples. Default to an empty string.
+
+ Returns:
+ The final prompt generated.
+ """
+ example_str = example_separator.join(examples)
+ template = prefix + example_str + suffix
+ return cls(input_variables=input_variables, template=template)
diff --git a/tests/unit_tests/chains/test_llm.py b/tests/unit_tests/chains/test_llm.py
index 4c350637c7..0077df861d 100644
--- a/tests/unit_tests/chains/test_llm.py
+++ b/tests/unit_tests/chains/test_llm.py
@@ -2,7 +2,7 @@
import pytest
from langchain.chains.llm import LLMChain
-from langchain.prompt import Prompt
+from langchain.prompts.prompt import Prompt
from tests.unit_tests.llms.fake_llm import FakeLLM
diff --git a/tests/unit_tests/chains/test_react.py b/tests/unit_tests/chains/test_react.py
index 7ca3cd84e9..e5c22dd4be 100644
--- a/tests/unit_tests/chains/test_react.py
+++ b/tests/unit_tests/chains/test_react.py
@@ -9,7 +9,7 @@ from langchain.chains.react.base import ReActChain, predict_until_observation
from langchain.docstore.base import Docstore
from langchain.docstore.document import Document
from langchain.llms.base import LLM
-from langchain.prompt import Prompt
+from langchain.prompts.prompt import Prompt
_PAGE_CONTENT = """This is a page about LangChain.
diff --git a/tests/unit_tests/test_dynamic_prompt.py b/tests/unit_tests/test_dynamic_prompt.py
index e4b4443bbc..72f56eea59 100644
--- a/tests/unit_tests/test_dynamic_prompt.py
+++ b/tests/unit_tests/test_dynamic_prompt.py
@@ -1,5 +1,6 @@
"""Test functionality related to dynamic prompts."""
-from langchain.prompt import DynamicPrompt, Prompt
+from langchain.prompts.dynamic import DynamicPrompt
+from langchain.prompts.prompt import Prompt
# FULL TEMPLATES
LONGER_TEMPLATE = """Test Prompt:
diff --git a/tests/unit_tests/test_prompt.py b/tests/unit_tests/test_prompt.py
index 280620cf32..4504079362 100644
--- a/tests/unit_tests/test_prompt.py
+++ b/tests/unit_tests/test_prompt.py
@@ -1,7 +1,7 @@
"""Test functionality related to prompts."""
import pytest
-from langchain.prompt import Prompt
+from langchain.prompts.prompt import Prompt
def test_prompt_valid() -> None: