mirror of
https://github.com/hwchase17/langchain
synced 2024-11-16 06:13:16 +00:00
Update Vertex template (#12644)
Co-authored-by: Erick Friis <erick@langchain.dev>
This commit is contained in:
parent
aa3f4a9bc8
commit
9e17d1a225
@ -1 +1,81 @@
|
||||
|
||||
# rag-matching-engine
|
||||
|
||||
This template performs RAG using Google Cloud Platform's Vertex AI with the matching engine.
|
||||
|
||||
It will utilize a previously created index to retrieve relevant documents or contexts based on user-provided questions.
|
||||
|
||||
## Environment Setup
|
||||
|
||||
An index should be created before running the code.
|
||||
|
||||
The process to create this index can be found [here](https://github.com/GoogleCloudPlatform/generative-ai/blob/main/language/use-cases/document-qa/question_answering_documents_langchain_matching_engine.ipynb).
|
||||
|
||||
Environment variables for Vertex should be set:
|
||||
```
|
||||
PROJECT_ID
|
||||
ME_REGION
|
||||
GCS_BUCKET
|
||||
ME_INDEX_ID
|
||||
ME_ENDPOINT_ID
|
||||
```
|
||||
|
||||
## Usage
|
||||
|
||||
To use this package, you should first have the LangChain CLI installed:
|
||||
|
||||
```shell
|
||||
pip install -U "langchain-cli[serve]"
|
||||
```
|
||||
|
||||
To create a new LangChain project and install this as the only package, you can do:
|
||||
|
||||
```shell
|
||||
langchain app new my-app --package rag-matching-engine
|
||||
```
|
||||
|
||||
If you want to add this to an existing project, you can just run:
|
||||
|
||||
```shell
|
||||
langchain app add rag-matching-engine
|
||||
```
|
||||
|
||||
And add the following code to your `server.py` file:
|
||||
```python
|
||||
from rag_matching_engine import chain as rag_matching_engine_chain
|
||||
|
||||
add_routes(app, rag_matching_engine_chain, path="/rag-matching-engine")
|
||||
```
|
||||
|
||||
(Optional) Let's now configure LangSmith.
|
||||
LangSmith will help us trace, monitor and debug LangChain applications.
|
||||
LangSmith is currently in private beta, you can sign up [here](https://smith.langchain.com/).
|
||||
If you don't have access, you can skip this section
|
||||
|
||||
```shell
|
||||
export LANGCHAIN_TRACING_V2=true
|
||||
export LANGCHAIN_API_KEY=<your-api-key>
|
||||
export LANGCHAIN_PROJECT=<your-project> # if not specified, defaults to "default"
|
||||
```
|
||||
|
||||
If you are inside this directory, then you can spin up a LangServe instance directly by:
|
||||
|
||||
```shell
|
||||
langchain serve
|
||||
```
|
||||
|
||||
This will start the FastAPI app with a server is running locally at
|
||||
[http://localhost:8000](http://localhost:8000)
|
||||
|
||||
We can see all templates at [http://127.0.0.1:8000/docs](http://127.0.0.1:8000/docs)
|
||||
We can access the playground at [http://127.0.0.1:8000/rag-matching-engine/playground](http://127.0.0.1:8000/rag-matching-engine/playground)
|
||||
|
||||
We can access the template from code with:
|
||||
|
||||
```python
|
||||
from langserve.client import RemoteRunnable
|
||||
|
||||
runnable = RemoteRunnable("http://localhost:8000/rag-matching-engine")
|
||||
```
|
||||
|
||||
For more details on how to connect to the template, refer to the Jupyter notebook `rag_matching_engine`.
|
@ -1,8 +1,8 @@
|
||||
[tool.poetry]
|
||||
name = "rag_matching_engine"
|
||||
name = "rag-matching-engine"
|
||||
version = "0.0.1"
|
||||
description = ""
|
||||
authors = []
|
||||
authors = ["Leonid Kuligin"]
|
||||
readme = "README.md"
|
||||
|
||||
[tool.poetry.dependencies]
|
||||
@ -16,7 +16,7 @@ fastapi = "^0.104.0"
|
||||
sse-starlette = "^1.6.5"
|
||||
|
||||
[tool.langserve]
|
||||
export_module = "rag_matching_engine.chain"
|
||||
export_module = "rag_matching_engine"
|
||||
export_attr = "chain"
|
||||
|
||||
[build-system]
|
||||
|
@ -0,0 +1,3 @@
|
||||
from rag_matching_engine.chain import chain
|
||||
|
||||
__all__ = ["chain"]
|
Loading…
Reference in New Issue
Block a user