mirror of
https://github.com/hwchase17/langchain
synced 2024-11-04 06:00:26 +00:00
Add dashvector self query retriever (#9684)
## Description Add `Dashvector` retriever and self-query retriever ## How to use ```python from langchain.vectorstores.dashvector import DashVector vectorstore = DashVector.from_documents(docs, embeddings) retriever = SelfQueryRetriever.from_llm( llm, vectorstore, document_content_description, metadata_field_info, verbose=True ) ``` --------- Co-authored-by: smallrain.xuxy <smallrain.xuxy@alibaba-inc.com> Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
This commit is contained in:
parent
056e59672b
commit
9bcfd58580
@ -0,0 +1,434 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"source": [
|
||||||
|
"# DashVector self-querying\n",
|
||||||
|
"\n",
|
||||||
|
"> [DashVector](https://help.aliyun.com/document_detail/2510225.html) is a fully-managed vectorDB service that supports high-dimension dense and sparse vectors, real-time insertion and filtered search. It is built to scale automatically and can adapt to different application requirements.\n",
|
||||||
|
"\n",
|
||||||
|
"In this notebook we'll demo the `SelfQueryRetriever` with a `DashVector` vector store."
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": false
|
||||||
|
},
|
||||||
|
"id": "59895c73d1a0f3ca"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"source": [
|
||||||
|
"## Create DashVector vectorstore\n",
|
||||||
|
"\n",
|
||||||
|
"First we'll want to create a `DashVector` VectorStore and seed it with some data. We've created a small demo set of documents that contain summaries of movies.\n",
|
||||||
|
"\n",
|
||||||
|
"To use DashVector, you have to have `dashvector` package installed, and you must have an API key and an Environment. Here are the [installation instructions](https://help.aliyun.com/document_detail/2510223.html).\n",
|
||||||
|
"\n",
|
||||||
|
"NOTE: The self-query retriever requires you to have `lark` package installed."
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": false
|
||||||
|
},
|
||||||
|
"id": "539ae9367e45a178"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 1,
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# !pip install lark dashvector"
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": false
|
||||||
|
},
|
||||||
|
"id": "67df7e1f8dc8cdd0"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 1,
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"import os\n",
|
||||||
|
"import dashvector\n",
|
||||||
|
"\n",
|
||||||
|
"client = dashvector.Client(api_key=os.environ[\"DASHVECTOR_API_KEY\"])"
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": false,
|
||||||
|
"ExecuteTime": {
|
||||||
|
"end_time": "2023-08-24T02:58:46.905337Z",
|
||||||
|
"start_time": "2023-08-24T02:58:46.252566Z"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"id": "ff61eaf13973b5fe"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from langchain.schema import Document\n",
|
||||||
|
"from langchain.embeddings import DashScopeEmbeddings\n",
|
||||||
|
"from langchain.vectorstores import DashVector\n",
|
||||||
|
"\n",
|
||||||
|
"embeddings = DashScopeEmbeddings()\n",
|
||||||
|
"\n",
|
||||||
|
"# create DashVector collection\n",
|
||||||
|
"client.create(\"langchain-self-retriever-demo\", dimension=1536)"
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": false
|
||||||
|
},
|
||||||
|
"id": "de5c77957ee42d14"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 3,
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"docs = [\n",
|
||||||
|
" Document(\n",
|
||||||
|
" page_content=\"A bunch of scientists bring back dinosaurs and mayhem breaks loose\",\n",
|
||||||
|
" metadata={\"year\": 1993, \"rating\": 7.7, \"genre\": \"action\"},\n",
|
||||||
|
" ),\n",
|
||||||
|
" Document(\n",
|
||||||
|
" page_content=\"Leo DiCaprio gets lost in a dream within a dream within a dream within a ...\",\n",
|
||||||
|
" metadata={\"year\": 2010, \"director\": \"Christopher Nolan\", \"rating\": 8.2},\n",
|
||||||
|
" ),\n",
|
||||||
|
" Document(\n",
|
||||||
|
" page_content=\"A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea\",\n",
|
||||||
|
" metadata={\"year\": 2006, \"director\": \"Satoshi Kon\", \"rating\": 8.6},\n",
|
||||||
|
" ),\n",
|
||||||
|
" Document(\n",
|
||||||
|
" page_content=\"A bunch of normal-sized women are supremely wholesome and some men pine after them\",\n",
|
||||||
|
" metadata={\"year\": 2019, \"director\": \"Greta Gerwig\", \"rating\": 8.3},\n",
|
||||||
|
" ),\n",
|
||||||
|
" Document(\n",
|
||||||
|
" page_content=\"Toys come alive and have a blast doing so\",\n",
|
||||||
|
" metadata={\"year\": 1995, \"genre\": \"animated\"},\n",
|
||||||
|
" ),\n",
|
||||||
|
" Document(\n",
|
||||||
|
" page_content=\"Three men walk into the Zone, three men walk out of the Zone\",\n",
|
||||||
|
" metadata={\n",
|
||||||
|
" \"year\": 1979,\n",
|
||||||
|
" \"director\": \"Andrei Tarkovsky\",\n",
|
||||||
|
" \"genre\": \"science fiction\",\n",
|
||||||
|
" \"rating\": 9.9,\n",
|
||||||
|
" },\n",
|
||||||
|
" ),\n",
|
||||||
|
"]\n",
|
||||||
|
"vectorstore = DashVector.from_documents(\n",
|
||||||
|
" docs, embeddings, collection_name=\"langchain-self-retriever-demo\"\n",
|
||||||
|
")"
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": false,
|
||||||
|
"ExecuteTime": {
|
||||||
|
"end_time": "2023-08-24T02:59:08.090031Z",
|
||||||
|
"start_time": "2023-08-24T02:59:05.660295Z"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"id": "8f40605548a4550"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"source": [
|
||||||
|
"## Create your self-querying retriever\n",
|
||||||
|
"\n",
|
||||||
|
"Now we can instantiate our retriever. To do this we'll need to provide some information upfront about the metadata fields that our documents support and a short description of the document contents."
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": false
|
||||||
|
},
|
||||||
|
"id": "eb1340adafac8993"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 4,
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from langchain.llms import Tongyi\n",
|
||||||
|
"from langchain.retrievers.self_query.base import SelfQueryRetriever\n",
|
||||||
|
"from langchain.chains.query_constructor.base import AttributeInfo\n",
|
||||||
|
"\n",
|
||||||
|
"metadata_field_info = [\n",
|
||||||
|
" AttributeInfo(\n",
|
||||||
|
" name=\"genre\",\n",
|
||||||
|
" description=\"The genre of the movie\",\n",
|
||||||
|
" type=\"string or list[string]\",\n",
|
||||||
|
" ),\n",
|
||||||
|
" AttributeInfo(\n",
|
||||||
|
" name=\"year\",\n",
|
||||||
|
" description=\"The year the movie was released\",\n",
|
||||||
|
" type=\"integer\",\n",
|
||||||
|
" ),\n",
|
||||||
|
" AttributeInfo(\n",
|
||||||
|
" name=\"director\",\n",
|
||||||
|
" description=\"The name of the movie director\",\n",
|
||||||
|
" type=\"string\",\n",
|
||||||
|
" ),\n",
|
||||||
|
" AttributeInfo(\n",
|
||||||
|
" name=\"rating\", description=\"A 1-10 rating for the movie\", type=\"float\"\n",
|
||||||
|
" ),\n",
|
||||||
|
"]\n",
|
||||||
|
"document_content_description = \"Brief summary of a movie\"\n",
|
||||||
|
"llm = Tongyi(temperature=0)\n",
|
||||||
|
"retriever = SelfQueryRetriever.from_llm(\n",
|
||||||
|
" llm, vectorstore, document_content_description, metadata_field_info, verbose=True\n",
|
||||||
|
")"
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": false,
|
||||||
|
"ExecuteTime": {
|
||||||
|
"end_time": "2023-08-24T02:59:11.003940Z",
|
||||||
|
"start_time": "2023-08-24T02:59:10.476722Z"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"id": "d65233dc044f95a7"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"source": [
|
||||||
|
"## Testing it out\n",
|
||||||
|
"\n",
|
||||||
|
"And now we can try actually using our retriever!"
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": false
|
||||||
|
},
|
||||||
|
"id": "a54af0d67b473db6"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 6,
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"query='dinosaurs' filter=None limit=None\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": "[Document(page_content='A bunch of scientists bring back dinosaurs and mayhem breaks loose', metadata={'year': 1993, 'rating': 7.699999809265137, 'genre': 'action'}),\n Document(page_content='Toys come alive and have a blast doing so', metadata={'year': 1995, 'genre': 'animated'}),\n Document(page_content='Leo DiCaprio gets lost in a dream within a dream within a dream within a ...', metadata={'year': 2010, 'director': 'Christopher Nolan', 'rating': 8.199999809265137}),\n Document(page_content='A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea', metadata={'year': 2006, 'director': 'Satoshi Kon', 'rating': 8.600000381469727})]"
|
||||||
|
},
|
||||||
|
"execution_count": 6,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"# This example only specifies a relevant query\n",
|
||||||
|
"retriever.get_relevant_documents(\"What are some movies about dinosaurs\")"
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": false,
|
||||||
|
"ExecuteTime": {
|
||||||
|
"end_time": "2023-08-24T02:59:28.577901Z",
|
||||||
|
"start_time": "2023-08-24T02:59:26.780184Z"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"id": "dad9da670a267fe7"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 7,
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"query=' ' filter=Comparison(comparator=<Comparator.GTE: 'gte'>, attribute='rating', value=8.5) limit=None\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": "[Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'year': 1979, 'director': 'Andrei Tarkovsky', 'rating': 9.899999618530273, 'genre': 'science fiction'}),\n Document(page_content='A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea', metadata={'year': 2006, 'director': 'Satoshi Kon', 'rating': 8.600000381469727})]"
|
||||||
|
},
|
||||||
|
"execution_count": 7,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"# This example only specifies a filter\n",
|
||||||
|
"retriever.get_relevant_documents(\"I want to watch a movie rated higher than 8.5\")"
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": false,
|
||||||
|
"ExecuteTime": {
|
||||||
|
"end_time": "2023-08-24T02:59:32.370774Z",
|
||||||
|
"start_time": "2023-08-24T02:59:30.614252Z"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"id": "d486a64316153d52"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 8,
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"query='Greta Gerwig' filter=Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='director', value='Greta Gerwig') limit=None\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": "[Document(page_content='A bunch of normal-sized women are supremely wholesome and some men pine after them', metadata={'year': 2019, 'director': 'Greta Gerwig', 'rating': 8.300000190734863})]"
|
||||||
|
},
|
||||||
|
"execution_count": 8,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"# This example specifies a query and a filter\n",
|
||||||
|
"retriever.get_relevant_documents(\"Has Greta Gerwig directed any movies about women\")"
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": false,
|
||||||
|
"ExecuteTime": {
|
||||||
|
"end_time": "2023-08-24T02:59:35.353439Z",
|
||||||
|
"start_time": "2023-08-24T02:59:33.278255Z"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"id": "e05919cdead7bd4a"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 9,
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"query='science fiction' filter=Operation(operator=<Operator.AND: 'and'>, arguments=[Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='genre', value='science fiction'), Comparison(comparator=<Comparator.GT: 'gt'>, attribute='rating', value=8.5)]) limit=None\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": "[Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'year': 1979, 'director': 'Andrei Tarkovsky', 'rating': 9.899999618530273, 'genre': 'science fiction'})]"
|
||||||
|
},
|
||||||
|
"execution_count": 9,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"# This example specifies a composite filter\n",
|
||||||
|
"retriever.get_relevant_documents(\"What's a highly rated (above 8.5) science fiction film?\")"
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": false,
|
||||||
|
"ExecuteTime": {
|
||||||
|
"end_time": "2023-08-24T02:59:38.913707Z",
|
||||||
|
"start_time": "2023-08-24T02:59:36.659271Z"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"id": "ac2c7012379e918e"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"source": [
|
||||||
|
"## Filter k\n",
|
||||||
|
"\n",
|
||||||
|
"We can also use the self query retriever to specify `k`: the number of documents to fetch.\n",
|
||||||
|
"\n",
|
||||||
|
"We can do this by passing `enable_limit=True` to the constructor."
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": false
|
||||||
|
},
|
||||||
|
"id": "af6aa93ae44af414"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 10,
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"retriever = SelfQueryRetriever.from_llm(\n",
|
||||||
|
" llm,\n",
|
||||||
|
" vectorstore,\n",
|
||||||
|
" document_content_description,\n",
|
||||||
|
" metadata_field_info,\n",
|
||||||
|
" enable_limit=True,\n",
|
||||||
|
" verbose=True,\n",
|
||||||
|
")"
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": false,
|
||||||
|
"ExecuteTime": {
|
||||||
|
"end_time": "2023-08-24T02:59:41.594073Z",
|
||||||
|
"start_time": "2023-08-24T02:59:41.563323Z"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"id": "a8c8f09bf5702767"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 11,
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"query='dinosaurs' filter=None limit=2\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": "[Document(page_content='A bunch of scientists bring back dinosaurs and mayhem breaks loose', metadata={'year': 1993, 'rating': 7.699999809265137, 'genre': 'action'}),\n Document(page_content='Toys come alive and have a blast doing so', metadata={'year': 1995, 'genre': 'animated'})]"
|
||||||
|
},
|
||||||
|
"execution_count": 11,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"# This example only specifies a relevant query\n",
|
||||||
|
"retriever.get_relevant_documents(\"what are two movies about dinosaurs\")"
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": false,
|
||||||
|
"ExecuteTime": {
|
||||||
|
"end_time": "2023-08-24T02:59:48.450506Z",
|
||||||
|
"start_time": "2023-08-24T02:59:46.252944Z"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"id": "b1089a6043980b84"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"outputs": [],
|
||||||
|
"source": [],
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": false
|
||||||
|
},
|
||||||
|
"id": "6d2d64e2ebb17d30"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 2
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython2",
|
||||||
|
"version": "2.7.6"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 5
|
||||||
|
}
|
@ -9,6 +9,7 @@ from langchain.chains.query_constructor.ir import StructuredQuery, Visitor
|
|||||||
from langchain.chains.query_constructor.schema import AttributeInfo
|
from langchain.chains.query_constructor.schema import AttributeInfo
|
||||||
from langchain.pydantic_v1 import BaseModel, Field, root_validator
|
from langchain.pydantic_v1 import BaseModel, Field, root_validator
|
||||||
from langchain.retrievers.self_query.chroma import ChromaTranslator
|
from langchain.retrievers.self_query.chroma import ChromaTranslator
|
||||||
|
from langchain.retrievers.self_query.dashvector import DashvectorTranslator
|
||||||
from langchain.retrievers.self_query.deeplake import DeepLakeTranslator
|
from langchain.retrievers.self_query.deeplake import DeepLakeTranslator
|
||||||
from langchain.retrievers.self_query.elasticsearch import ElasticsearchTranslator
|
from langchain.retrievers.self_query.elasticsearch import ElasticsearchTranslator
|
||||||
from langchain.retrievers.self_query.myscale import MyScaleTranslator
|
from langchain.retrievers.self_query.myscale import MyScaleTranslator
|
||||||
@ -19,6 +20,7 @@ from langchain.schema import BaseRetriever, Document
|
|||||||
from langchain.schema.language_model import BaseLanguageModel
|
from langchain.schema.language_model import BaseLanguageModel
|
||||||
from langchain.vectorstores import (
|
from langchain.vectorstores import (
|
||||||
Chroma,
|
Chroma,
|
||||||
|
DashVector,
|
||||||
DeepLake,
|
DeepLake,
|
||||||
ElasticsearchStore,
|
ElasticsearchStore,
|
||||||
MyScale,
|
MyScale,
|
||||||
@ -35,6 +37,7 @@ def _get_builtin_translator(vectorstore: VectorStore) -> Visitor:
|
|||||||
BUILTIN_TRANSLATORS: Dict[Type[VectorStore], Type[Visitor]] = {
|
BUILTIN_TRANSLATORS: Dict[Type[VectorStore], Type[Visitor]] = {
|
||||||
Pinecone: PineconeTranslator,
|
Pinecone: PineconeTranslator,
|
||||||
Chroma: ChromaTranslator,
|
Chroma: ChromaTranslator,
|
||||||
|
DashVector: DashvectorTranslator,
|
||||||
Weaviate: WeaviateTranslator,
|
Weaviate: WeaviateTranslator,
|
||||||
Qdrant: QdrantTranslator,
|
Qdrant: QdrantTranslator,
|
||||||
MyScale: MyScaleTranslator,
|
MyScale: MyScaleTranslator,
|
||||||
|
64
libs/langchain/langchain/retrievers/self_query/dashvector.py
Normal file
64
libs/langchain/langchain/retrievers/self_query/dashvector.py
Normal file
@ -0,0 +1,64 @@
|
|||||||
|
"""Logic for converting internal query language to a valid DashVector query."""
|
||||||
|
from typing import Tuple, Union
|
||||||
|
|
||||||
|
from langchain.chains.query_constructor.ir import (
|
||||||
|
Comparator,
|
||||||
|
Comparison,
|
||||||
|
Operation,
|
||||||
|
Operator,
|
||||||
|
StructuredQuery,
|
||||||
|
Visitor,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class DashvectorTranslator(Visitor):
|
||||||
|
"""Logic for converting internal query language elements to valid filters."""
|
||||||
|
|
||||||
|
allowed_operators = [Operator.AND, Operator.OR]
|
||||||
|
allowed_comparators = [
|
||||||
|
Comparator.EQ,
|
||||||
|
Comparator.GT,
|
||||||
|
Comparator.GTE,
|
||||||
|
Comparator.LT,
|
||||||
|
Comparator.LTE,
|
||||||
|
Comparator.LIKE,
|
||||||
|
]
|
||||||
|
|
||||||
|
map_dict = {
|
||||||
|
Operator.AND: " AND ",
|
||||||
|
Operator.OR: " OR ",
|
||||||
|
Comparator.EQ: " = ",
|
||||||
|
Comparator.GT: " > ",
|
||||||
|
Comparator.GTE: " >= ",
|
||||||
|
Comparator.LT: " < ",
|
||||||
|
Comparator.LTE: " <= ",
|
||||||
|
Comparator.LIKE: " LIKE ",
|
||||||
|
}
|
||||||
|
|
||||||
|
def _format_func(self, func: Union[Operator, Comparator]) -> str:
|
||||||
|
self._validate_func(func)
|
||||||
|
return self.map_dict[func]
|
||||||
|
|
||||||
|
def visit_operation(self, operation: Operation) -> str:
|
||||||
|
args = [arg.accept(self) for arg in operation.arguments]
|
||||||
|
return self._format_func(operation.operator).join(args)
|
||||||
|
|
||||||
|
def visit_comparison(self, comparison: Comparison) -> str:
|
||||||
|
value = comparison.value
|
||||||
|
if isinstance(value, str):
|
||||||
|
if comparison.comparator == Comparator.LIKE:
|
||||||
|
value = f"'%{value}%'"
|
||||||
|
else:
|
||||||
|
value = f"'{value}'"
|
||||||
|
return (
|
||||||
|
f"{comparison.attribute}{self._format_func(comparison.comparator)}{value}"
|
||||||
|
)
|
||||||
|
|
||||||
|
def visit_structured_query(
|
||||||
|
self, structured_query: StructuredQuery
|
||||||
|
) -> Tuple[str, dict]:
|
||||||
|
if structured_query.filter is None:
|
||||||
|
kwargs = {}
|
||||||
|
else:
|
||||||
|
kwargs = {"filter": structured_query.filter.accept(self)}
|
||||||
|
return structured_query.query, kwargs
|
24
libs/langchain/poetry.lock
generated
24
libs/langchain/poetry.lock
generated
@ -1799,6 +1799,26 @@ files = [
|
|||||||
{file = "cssselect-1.2.0.tar.gz", hash = "sha256:666b19839cfaddb9ce9d36bfe4c969132c647b92fc9088c4e23f786b30f1b3dc"},
|
{file = "cssselect-1.2.0.tar.gz", hash = "sha256:666b19839cfaddb9ce9d36bfe4c969132c647b92fc9088c4e23f786b30f1b3dc"},
|
||||||
]
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "dashvector"
|
||||||
|
version = "1.0.1"
|
||||||
|
description = "DashVector Client Python Sdk Library"
|
||||||
|
category = "main"
|
||||||
|
optional = true
|
||||||
|
python-versions = ">=3.7.0"
|
||||||
|
files = [
|
||||||
|
{file = "dashvector-1.0.1-py3-none-any.whl", hash = "sha256:e2fc362c65979d55cf605fb90deca4a292c69e1c2101df22430c80db744591ad"},
|
||||||
|
]
|
||||||
|
|
||||||
|
[package.dependencies]
|
||||||
|
aiohttp = ">=3.1.0"
|
||||||
|
grpcio = [
|
||||||
|
{version = ">=1.22.0", markers = "python_version < \"3.11\""},
|
||||||
|
{version = ">=1.49.1", markers = "python_version >= \"3.11\""},
|
||||||
|
]
|
||||||
|
numpy = "*"
|
||||||
|
protobuf = ">=3.8.0,<4.0.0"
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "dataclasses-json"
|
name = "dataclasses-json"
|
||||||
version = "0.5.9"
|
version = "0.5.9"
|
||||||
@ -10897,7 +10917,7 @@ clarifai = ["clarifai"]
|
|||||||
cohere = ["cohere"]
|
cohere = ["cohere"]
|
||||||
docarray = ["docarray"]
|
docarray = ["docarray"]
|
||||||
embeddings = ["sentence-transformers"]
|
embeddings = ["sentence-transformers"]
|
||||||
extended-testing = ["amazon-textract-caller", "assemblyai", "beautifulsoup4", "bibtexparser", "cassio", "chardet", "esprima", "jq", "pdfminer-six", "pgvector", "pypdf", "pymupdf", "pypdfium2", "tqdm", "lxml", "atlassian-python-api", "mwparserfromhell", "mwxml", "pandas", "telethon", "psychicapi", "gql", "requests-toolbelt", "html2text", "py-trello", "scikit-learn", "streamlit", "pyspark", "openai", "sympy", "rapidfuzz", "openai", "rank-bm25", "geopandas", "jinja2", "gitpython", "newspaper3k", "feedparser", "xata", "xmltodict", "faiss-cpu", "openapi-schema-pydantic", "markdownify", "sqlite-vss"]
|
extended-testing = ["amazon-textract-caller", "assemblyai", "beautifulsoup4", "bibtexparser", "cassio", "chardet", "esprima", "jq", "pdfminer-six", "pgvector", "pypdf", "pymupdf", "pypdfium2", "tqdm", "lxml", "atlassian-python-api", "mwparserfromhell", "mwxml", "pandas", "telethon", "psychicapi", "gql", "requests-toolbelt", "html2text", "py-trello", "scikit-learn", "streamlit", "pyspark", "openai", "sympy", "rapidfuzz", "openai", "rank-bm25", "geopandas", "jinja2", "gitpython", "newspaper3k", "feedparser", "xata", "xmltodict", "faiss-cpu", "openapi-schema-pydantic", "markdownify", "dashvector", "sqlite-vss"]
|
||||||
javascript = ["esprima"]
|
javascript = ["esprima"]
|
||||||
llms = ["clarifai", "cohere", "openai", "openlm", "nlpcloud", "huggingface_hub", "manifest-ml", "torch", "transformers"]
|
llms = ["clarifai", "cohere", "openai", "openlm", "nlpcloud", "huggingface_hub", "manifest-ml", "torch", "transformers"]
|
||||||
openai = ["openai", "tiktoken"]
|
openai = ["openai", "tiktoken"]
|
||||||
@ -10907,4 +10927,4 @@ text-helpers = ["chardet"]
|
|||||||
[metadata]
|
[metadata]
|
||||||
lock-version = "2.0"
|
lock-version = "2.0"
|
||||||
python-versions = ">=3.8.1,<4.0"
|
python-versions = ">=3.8.1,<4.0"
|
||||||
content-hash = "47e048f7708139d5e5040c6d56ef4cb66153c3052a9237d6ea42eeb2565ad470"
|
content-hash = "b63078268a80c07577b432114302f4f86d47be25b83a245affb0dbc999fb2c1f"
|
||||||
|
@ -127,6 +127,7 @@ xata = {version = "^1.0.0a7", optional = true}
|
|||||||
xmltodict = {version = "^0.13.0", optional = true}
|
xmltodict = {version = "^0.13.0", optional = true}
|
||||||
markdownify = {version = "^0.11.6", optional = true}
|
markdownify = {version = "^0.11.6", optional = true}
|
||||||
assemblyai = {version = "^0.17.0", optional = true}
|
assemblyai = {version = "^0.17.0", optional = true}
|
||||||
|
dashvector = {version = "^1.0.1", optional = true}
|
||||||
sqlite-vss = {version = "^0.1.2", optional = true}
|
sqlite-vss = {version = "^0.1.2", optional = true}
|
||||||
|
|
||||||
|
|
||||||
@ -342,6 +343,7 @@ extended_testing = [
|
|||||||
"faiss-cpu",
|
"faiss-cpu",
|
||||||
"openapi-schema-pydantic",
|
"openapi-schema-pydantic",
|
||||||
"markdownify",
|
"markdownify",
|
||||||
|
"dashvector",
|
||||||
"sqlite-vss",
|
"sqlite-vss",
|
||||||
]
|
]
|
||||||
|
|
||||||
|
@ -0,0 +1,52 @@
|
|||||||
|
from typing import Any, Tuple
|
||||||
|
|
||||||
|
import pytest
|
||||||
|
|
||||||
|
from langchain.chains.query_constructor.ir import (
|
||||||
|
Comparator,
|
||||||
|
Comparison,
|
||||||
|
Operation,
|
||||||
|
Operator,
|
||||||
|
)
|
||||||
|
from langchain.retrievers.self_query.dashvector import DashvectorTranslator
|
||||||
|
|
||||||
|
DEFAULT_TRANSLATOR = DashvectorTranslator()
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.parametrize(
|
||||||
|
"triplet",
|
||||||
|
[
|
||||||
|
(Comparator.EQ, 2, "foo = 2"),
|
||||||
|
(Comparator.LT, 2, "foo < 2"),
|
||||||
|
(Comparator.LTE, 2, "foo <= 2"),
|
||||||
|
(Comparator.GT, 2, "foo > 2"),
|
||||||
|
(Comparator.GTE, 2, "foo >= 2"),
|
||||||
|
(Comparator.LIKE, "bar", "foo LIKE '%bar%'"),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
def test_visit_comparison(triplet: Tuple[Comparator, Any, str]) -> None:
|
||||||
|
comparator, value, expected = triplet
|
||||||
|
actual = DEFAULT_TRANSLATOR.visit_comparison(
|
||||||
|
Comparison(comparator=comparator, attribute="foo", value=value)
|
||||||
|
)
|
||||||
|
assert expected == actual
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.parametrize(
|
||||||
|
"triplet",
|
||||||
|
[
|
||||||
|
(Operator.AND, "foo < 2 AND bar = 'baz'"),
|
||||||
|
(Operator.OR, "foo < 2 OR bar = 'baz'"),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
def test_visit_operation(triplet: Tuple[Operator, str]) -> None:
|
||||||
|
operator, expected = triplet
|
||||||
|
op = Operation(
|
||||||
|
operator=operator,
|
||||||
|
arguments=[
|
||||||
|
Comparison(comparator=Comparator.LT, attribute="foo", value=2),
|
||||||
|
Comparison(comparator=Comparator.EQ, attribute="bar", value="baz"),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
actual = DEFAULT_TRANSLATOR.visit_operation(op)
|
||||||
|
assert expected == actual
|
Loading…
Reference in New Issue
Block a user