Add dashvector self query retriever (#9684)

## Description
Add `Dashvector` retriever and self-query retriever

## How to use
```python
from langchain.vectorstores.dashvector import DashVector

vectorstore = DashVector.from_documents(docs, embeddings)
retriever = SelfQueryRetriever.from_llm(
    llm, vectorstore, document_content_description, metadata_field_info, verbose=True
)
```

---------

Co-authored-by: smallrain.xuxy <smallrain.xuxy@alibaba-inc.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
This commit is contained in:
Xiaoyu Xee 2023-09-04 11:51:04 +08:00 committed by GitHub
parent 056e59672b
commit 9bcfd58580
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 577 additions and 2 deletions

View File

@ -0,0 +1,434 @@
{
"cells": [
{
"cell_type": "markdown",
"source": [
"# DashVector self-querying\n",
"\n",
"> [DashVector](https://help.aliyun.com/document_detail/2510225.html) is a fully-managed vectorDB service that supports high-dimension dense and sparse vectors, real-time insertion and filtered search. It is built to scale automatically and can adapt to different application requirements.\n",
"\n",
"In this notebook we'll demo the `SelfQueryRetriever` with a `DashVector` vector store."
],
"metadata": {
"collapsed": false
},
"id": "59895c73d1a0f3ca"
},
{
"cell_type": "markdown",
"source": [
"## Create DashVector vectorstore\n",
"\n",
"First we'll want to create a `DashVector` VectorStore and seed it with some data. We've created a small demo set of documents that contain summaries of movies.\n",
"\n",
"To use DashVector, you have to have `dashvector` package installed, and you must have an API key and an Environment. Here are the [installation instructions](https://help.aliyun.com/document_detail/2510223.html).\n",
"\n",
"NOTE: The self-query retriever requires you to have `lark` package installed."
],
"metadata": {
"collapsed": false
},
"id": "539ae9367e45a178"
},
{
"cell_type": "code",
"execution_count": 1,
"outputs": [],
"source": [
"# !pip install lark dashvector"
],
"metadata": {
"collapsed": false
},
"id": "67df7e1f8dc8cdd0"
},
{
"cell_type": "code",
"execution_count": 1,
"outputs": [],
"source": [
"import os\n",
"import dashvector\n",
"\n",
"client = dashvector.Client(api_key=os.environ[\"DASHVECTOR_API_KEY\"])"
],
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2023-08-24T02:58:46.905337Z",
"start_time": "2023-08-24T02:58:46.252566Z"
}
},
"id": "ff61eaf13973b5fe"
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"from langchain.schema import Document\n",
"from langchain.embeddings import DashScopeEmbeddings\n",
"from langchain.vectorstores import DashVector\n",
"\n",
"embeddings = DashScopeEmbeddings()\n",
"\n",
"# create DashVector collection\n",
"client.create(\"langchain-self-retriever-demo\", dimension=1536)"
],
"metadata": {
"collapsed": false
},
"id": "de5c77957ee42d14"
},
{
"cell_type": "code",
"execution_count": 3,
"outputs": [],
"source": [
"docs = [\n",
" Document(\n",
" page_content=\"A bunch of scientists bring back dinosaurs and mayhem breaks loose\",\n",
" metadata={\"year\": 1993, \"rating\": 7.7, \"genre\": \"action\"},\n",
" ),\n",
" Document(\n",
" page_content=\"Leo DiCaprio gets lost in a dream within a dream within a dream within a ...\",\n",
" metadata={\"year\": 2010, \"director\": \"Christopher Nolan\", \"rating\": 8.2},\n",
" ),\n",
" Document(\n",
" page_content=\"A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea\",\n",
" metadata={\"year\": 2006, \"director\": \"Satoshi Kon\", \"rating\": 8.6},\n",
" ),\n",
" Document(\n",
" page_content=\"A bunch of normal-sized women are supremely wholesome and some men pine after them\",\n",
" metadata={\"year\": 2019, \"director\": \"Greta Gerwig\", \"rating\": 8.3},\n",
" ),\n",
" Document(\n",
" page_content=\"Toys come alive and have a blast doing so\",\n",
" metadata={\"year\": 1995, \"genre\": \"animated\"},\n",
" ),\n",
" Document(\n",
" page_content=\"Three men walk into the Zone, three men walk out of the Zone\",\n",
" metadata={\n",
" \"year\": 1979,\n",
" \"director\": \"Andrei Tarkovsky\",\n",
" \"genre\": \"science fiction\",\n",
" \"rating\": 9.9,\n",
" },\n",
" ),\n",
"]\n",
"vectorstore = DashVector.from_documents(\n",
" docs, embeddings, collection_name=\"langchain-self-retriever-demo\"\n",
")"
],
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2023-08-24T02:59:08.090031Z",
"start_time": "2023-08-24T02:59:05.660295Z"
}
},
"id": "8f40605548a4550"
},
{
"cell_type": "markdown",
"source": [
"## Create your self-querying retriever\n",
"\n",
"Now we can instantiate our retriever. To do this we'll need to provide some information upfront about the metadata fields that our documents support and a short description of the document contents."
],
"metadata": {
"collapsed": false
},
"id": "eb1340adafac8993"
},
{
"cell_type": "code",
"execution_count": 4,
"outputs": [],
"source": [
"from langchain.llms import Tongyi\n",
"from langchain.retrievers.self_query.base import SelfQueryRetriever\n",
"from langchain.chains.query_constructor.base import AttributeInfo\n",
"\n",
"metadata_field_info = [\n",
" AttributeInfo(\n",
" name=\"genre\",\n",
" description=\"The genre of the movie\",\n",
" type=\"string or list[string]\",\n",
" ),\n",
" AttributeInfo(\n",
" name=\"year\",\n",
" description=\"The year the movie was released\",\n",
" type=\"integer\",\n",
" ),\n",
" AttributeInfo(\n",
" name=\"director\",\n",
" description=\"The name of the movie director\",\n",
" type=\"string\",\n",
" ),\n",
" AttributeInfo(\n",
" name=\"rating\", description=\"A 1-10 rating for the movie\", type=\"float\"\n",
" ),\n",
"]\n",
"document_content_description = \"Brief summary of a movie\"\n",
"llm = Tongyi(temperature=0)\n",
"retriever = SelfQueryRetriever.from_llm(\n",
" llm, vectorstore, document_content_description, metadata_field_info, verbose=True\n",
")"
],
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2023-08-24T02:59:11.003940Z",
"start_time": "2023-08-24T02:59:10.476722Z"
}
},
"id": "d65233dc044f95a7"
},
{
"cell_type": "markdown",
"source": [
"## Testing it out\n",
"\n",
"And now we can try actually using our retriever!"
],
"metadata": {
"collapsed": false
},
"id": "a54af0d67b473db6"
},
{
"cell_type": "code",
"execution_count": 6,
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"query='dinosaurs' filter=None limit=None\n"
]
},
{
"data": {
"text/plain": "[Document(page_content='A bunch of scientists bring back dinosaurs and mayhem breaks loose', metadata={'year': 1993, 'rating': 7.699999809265137, 'genre': 'action'}),\n Document(page_content='Toys come alive and have a blast doing so', metadata={'year': 1995, 'genre': 'animated'}),\n Document(page_content='Leo DiCaprio gets lost in a dream within a dream within a dream within a ...', metadata={'year': 2010, 'director': 'Christopher Nolan', 'rating': 8.199999809265137}),\n Document(page_content='A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea', metadata={'year': 2006, 'director': 'Satoshi Kon', 'rating': 8.600000381469727})]"
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# This example only specifies a relevant query\n",
"retriever.get_relevant_documents(\"What are some movies about dinosaurs\")"
],
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2023-08-24T02:59:28.577901Z",
"start_time": "2023-08-24T02:59:26.780184Z"
}
},
"id": "dad9da670a267fe7"
},
{
"cell_type": "code",
"execution_count": 7,
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"query=' ' filter=Comparison(comparator=<Comparator.GTE: 'gte'>, attribute='rating', value=8.5) limit=None\n"
]
},
{
"data": {
"text/plain": "[Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'year': 1979, 'director': 'Andrei Tarkovsky', 'rating': 9.899999618530273, 'genre': 'science fiction'}),\n Document(page_content='A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea', metadata={'year': 2006, 'director': 'Satoshi Kon', 'rating': 8.600000381469727})]"
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# This example only specifies a filter\n",
"retriever.get_relevant_documents(\"I want to watch a movie rated higher than 8.5\")"
],
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2023-08-24T02:59:32.370774Z",
"start_time": "2023-08-24T02:59:30.614252Z"
}
},
"id": "d486a64316153d52"
},
{
"cell_type": "code",
"execution_count": 8,
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"query='Greta Gerwig' filter=Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='director', value='Greta Gerwig') limit=None\n"
]
},
{
"data": {
"text/plain": "[Document(page_content='A bunch of normal-sized women are supremely wholesome and some men pine after them', metadata={'year': 2019, 'director': 'Greta Gerwig', 'rating': 8.300000190734863})]"
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# This example specifies a query and a filter\n",
"retriever.get_relevant_documents(\"Has Greta Gerwig directed any movies about women\")"
],
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2023-08-24T02:59:35.353439Z",
"start_time": "2023-08-24T02:59:33.278255Z"
}
},
"id": "e05919cdead7bd4a"
},
{
"cell_type": "code",
"execution_count": 9,
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"query='science fiction' filter=Operation(operator=<Operator.AND: 'and'>, arguments=[Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='genre', value='science fiction'), Comparison(comparator=<Comparator.GT: 'gt'>, attribute='rating', value=8.5)]) limit=None\n"
]
},
{
"data": {
"text/plain": "[Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'year': 1979, 'director': 'Andrei Tarkovsky', 'rating': 9.899999618530273, 'genre': 'science fiction'})]"
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# This example specifies a composite filter\n",
"retriever.get_relevant_documents(\"What's a highly rated (above 8.5) science fiction film?\")"
],
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2023-08-24T02:59:38.913707Z",
"start_time": "2023-08-24T02:59:36.659271Z"
}
},
"id": "ac2c7012379e918e"
},
{
"cell_type": "markdown",
"source": [
"## Filter k\n",
"\n",
"We can also use the self query retriever to specify `k`: the number of documents to fetch.\n",
"\n",
"We can do this by passing `enable_limit=True` to the constructor."
],
"metadata": {
"collapsed": false
},
"id": "af6aa93ae44af414"
},
{
"cell_type": "code",
"execution_count": 10,
"outputs": [],
"source": [
"retriever = SelfQueryRetriever.from_llm(\n",
" llm,\n",
" vectorstore,\n",
" document_content_description,\n",
" metadata_field_info,\n",
" enable_limit=True,\n",
" verbose=True,\n",
")"
],
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2023-08-24T02:59:41.594073Z",
"start_time": "2023-08-24T02:59:41.563323Z"
}
},
"id": "a8c8f09bf5702767"
},
{
"cell_type": "code",
"execution_count": 11,
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"query='dinosaurs' filter=None limit=2\n"
]
},
{
"data": {
"text/plain": "[Document(page_content='A bunch of scientists bring back dinosaurs and mayhem breaks loose', metadata={'year': 1993, 'rating': 7.699999809265137, 'genre': 'action'}),\n Document(page_content='Toys come alive and have a blast doing so', metadata={'year': 1995, 'genre': 'animated'})]"
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# This example only specifies a relevant query\n",
"retriever.get_relevant_documents(\"what are two movies about dinosaurs\")"
],
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2023-08-24T02:59:48.450506Z",
"start_time": "2023-08-24T02:59:46.252944Z"
}
},
"id": "b1089a6043980b84"
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [],
"metadata": {
"collapsed": false
},
"id": "6d2d64e2ebb17d30"
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -9,6 +9,7 @@ from langchain.chains.query_constructor.ir import StructuredQuery, Visitor
from langchain.chains.query_constructor.schema import AttributeInfo from langchain.chains.query_constructor.schema import AttributeInfo
from langchain.pydantic_v1 import BaseModel, Field, root_validator from langchain.pydantic_v1 import BaseModel, Field, root_validator
from langchain.retrievers.self_query.chroma import ChromaTranslator from langchain.retrievers.self_query.chroma import ChromaTranslator
from langchain.retrievers.self_query.dashvector import DashvectorTranslator
from langchain.retrievers.self_query.deeplake import DeepLakeTranslator from langchain.retrievers.self_query.deeplake import DeepLakeTranslator
from langchain.retrievers.self_query.elasticsearch import ElasticsearchTranslator from langchain.retrievers.self_query.elasticsearch import ElasticsearchTranslator
from langchain.retrievers.self_query.myscale import MyScaleTranslator from langchain.retrievers.self_query.myscale import MyScaleTranslator
@ -19,6 +20,7 @@ from langchain.schema import BaseRetriever, Document
from langchain.schema.language_model import BaseLanguageModel from langchain.schema.language_model import BaseLanguageModel
from langchain.vectorstores import ( from langchain.vectorstores import (
Chroma, Chroma,
DashVector,
DeepLake, DeepLake,
ElasticsearchStore, ElasticsearchStore,
MyScale, MyScale,
@ -35,6 +37,7 @@ def _get_builtin_translator(vectorstore: VectorStore) -> Visitor:
BUILTIN_TRANSLATORS: Dict[Type[VectorStore], Type[Visitor]] = { BUILTIN_TRANSLATORS: Dict[Type[VectorStore], Type[Visitor]] = {
Pinecone: PineconeTranslator, Pinecone: PineconeTranslator,
Chroma: ChromaTranslator, Chroma: ChromaTranslator,
DashVector: DashvectorTranslator,
Weaviate: WeaviateTranslator, Weaviate: WeaviateTranslator,
Qdrant: QdrantTranslator, Qdrant: QdrantTranslator,
MyScale: MyScaleTranslator, MyScale: MyScaleTranslator,

View File

@ -0,0 +1,64 @@
"""Logic for converting internal query language to a valid DashVector query."""
from typing import Tuple, Union
from langchain.chains.query_constructor.ir import (
Comparator,
Comparison,
Operation,
Operator,
StructuredQuery,
Visitor,
)
class DashvectorTranslator(Visitor):
"""Logic for converting internal query language elements to valid filters."""
allowed_operators = [Operator.AND, Operator.OR]
allowed_comparators = [
Comparator.EQ,
Comparator.GT,
Comparator.GTE,
Comparator.LT,
Comparator.LTE,
Comparator.LIKE,
]
map_dict = {
Operator.AND: " AND ",
Operator.OR: " OR ",
Comparator.EQ: " = ",
Comparator.GT: " > ",
Comparator.GTE: " >= ",
Comparator.LT: " < ",
Comparator.LTE: " <= ",
Comparator.LIKE: " LIKE ",
}
def _format_func(self, func: Union[Operator, Comparator]) -> str:
self._validate_func(func)
return self.map_dict[func]
def visit_operation(self, operation: Operation) -> str:
args = [arg.accept(self) for arg in operation.arguments]
return self._format_func(operation.operator).join(args)
def visit_comparison(self, comparison: Comparison) -> str:
value = comparison.value
if isinstance(value, str):
if comparison.comparator == Comparator.LIKE:
value = f"'%{value}%'"
else:
value = f"'{value}'"
return (
f"{comparison.attribute}{self._format_func(comparison.comparator)}{value}"
)
def visit_structured_query(
self, structured_query: StructuredQuery
) -> Tuple[str, dict]:
if structured_query.filter is None:
kwargs = {}
else:
kwargs = {"filter": structured_query.filter.accept(self)}
return structured_query.query, kwargs

View File

@ -1799,6 +1799,26 @@ files = [
{file = "cssselect-1.2.0.tar.gz", hash = "sha256:666b19839cfaddb9ce9d36bfe4c969132c647b92fc9088c4e23f786b30f1b3dc"}, {file = "cssselect-1.2.0.tar.gz", hash = "sha256:666b19839cfaddb9ce9d36bfe4c969132c647b92fc9088c4e23f786b30f1b3dc"},
] ]
[[package]]
name = "dashvector"
version = "1.0.1"
description = "DashVector Client Python Sdk Library"
category = "main"
optional = true
python-versions = ">=3.7.0"
files = [
{file = "dashvector-1.0.1-py3-none-any.whl", hash = "sha256:e2fc362c65979d55cf605fb90deca4a292c69e1c2101df22430c80db744591ad"},
]
[package.dependencies]
aiohttp = ">=3.1.0"
grpcio = [
{version = ">=1.22.0", markers = "python_version < \"3.11\""},
{version = ">=1.49.1", markers = "python_version >= \"3.11\""},
]
numpy = "*"
protobuf = ">=3.8.0,<4.0.0"
[[package]] [[package]]
name = "dataclasses-json" name = "dataclasses-json"
version = "0.5.9" version = "0.5.9"
@ -10897,7 +10917,7 @@ clarifai = ["clarifai"]
cohere = ["cohere"] cohere = ["cohere"]
docarray = ["docarray"] docarray = ["docarray"]
embeddings = ["sentence-transformers"] embeddings = ["sentence-transformers"]
extended-testing = ["amazon-textract-caller", "assemblyai", "beautifulsoup4", "bibtexparser", "cassio", "chardet", "esprima", "jq", "pdfminer-six", "pgvector", "pypdf", "pymupdf", "pypdfium2", "tqdm", "lxml", "atlassian-python-api", "mwparserfromhell", "mwxml", "pandas", "telethon", "psychicapi", "gql", "requests-toolbelt", "html2text", "py-trello", "scikit-learn", "streamlit", "pyspark", "openai", "sympy", "rapidfuzz", "openai", "rank-bm25", "geopandas", "jinja2", "gitpython", "newspaper3k", "feedparser", "xata", "xmltodict", "faiss-cpu", "openapi-schema-pydantic", "markdownify", "sqlite-vss"] extended-testing = ["amazon-textract-caller", "assemblyai", "beautifulsoup4", "bibtexparser", "cassio", "chardet", "esprima", "jq", "pdfminer-six", "pgvector", "pypdf", "pymupdf", "pypdfium2", "tqdm", "lxml", "atlassian-python-api", "mwparserfromhell", "mwxml", "pandas", "telethon", "psychicapi", "gql", "requests-toolbelt", "html2text", "py-trello", "scikit-learn", "streamlit", "pyspark", "openai", "sympy", "rapidfuzz", "openai", "rank-bm25", "geopandas", "jinja2", "gitpython", "newspaper3k", "feedparser", "xata", "xmltodict", "faiss-cpu", "openapi-schema-pydantic", "markdownify", "dashvector", "sqlite-vss"]
javascript = ["esprima"] javascript = ["esprima"]
llms = ["clarifai", "cohere", "openai", "openlm", "nlpcloud", "huggingface_hub", "manifest-ml", "torch", "transformers"] llms = ["clarifai", "cohere", "openai", "openlm", "nlpcloud", "huggingface_hub", "manifest-ml", "torch", "transformers"]
openai = ["openai", "tiktoken"] openai = ["openai", "tiktoken"]
@ -10907,4 +10927,4 @@ text-helpers = ["chardet"]
[metadata] [metadata]
lock-version = "2.0" lock-version = "2.0"
python-versions = ">=3.8.1,<4.0" python-versions = ">=3.8.1,<4.0"
content-hash = "47e048f7708139d5e5040c6d56ef4cb66153c3052a9237d6ea42eeb2565ad470" content-hash = "b63078268a80c07577b432114302f4f86d47be25b83a245affb0dbc999fb2c1f"

View File

@ -127,6 +127,7 @@ xata = {version = "^1.0.0a7", optional = true}
xmltodict = {version = "^0.13.0", optional = true} xmltodict = {version = "^0.13.0", optional = true}
markdownify = {version = "^0.11.6", optional = true} markdownify = {version = "^0.11.6", optional = true}
assemblyai = {version = "^0.17.0", optional = true} assemblyai = {version = "^0.17.0", optional = true}
dashvector = {version = "^1.0.1", optional = true}
sqlite-vss = {version = "^0.1.2", optional = true} sqlite-vss = {version = "^0.1.2", optional = true}
@ -342,6 +343,7 @@ extended_testing = [
"faiss-cpu", "faiss-cpu",
"openapi-schema-pydantic", "openapi-schema-pydantic",
"markdownify", "markdownify",
"dashvector",
"sqlite-vss", "sqlite-vss",
] ]

View File

@ -0,0 +1,52 @@
from typing import Any, Tuple
import pytest
from langchain.chains.query_constructor.ir import (
Comparator,
Comparison,
Operation,
Operator,
)
from langchain.retrievers.self_query.dashvector import DashvectorTranslator
DEFAULT_TRANSLATOR = DashvectorTranslator()
@pytest.mark.parametrize(
"triplet",
[
(Comparator.EQ, 2, "foo = 2"),
(Comparator.LT, 2, "foo < 2"),
(Comparator.LTE, 2, "foo <= 2"),
(Comparator.GT, 2, "foo > 2"),
(Comparator.GTE, 2, "foo >= 2"),
(Comparator.LIKE, "bar", "foo LIKE '%bar%'"),
],
)
def test_visit_comparison(triplet: Tuple[Comparator, Any, str]) -> None:
comparator, value, expected = triplet
actual = DEFAULT_TRANSLATOR.visit_comparison(
Comparison(comparator=comparator, attribute="foo", value=value)
)
assert expected == actual
@pytest.mark.parametrize(
"triplet",
[
(Operator.AND, "foo < 2 AND bar = 'baz'"),
(Operator.OR, "foo < 2 OR bar = 'baz'"),
],
)
def test_visit_operation(triplet: Tuple[Operator, str]) -> None:
operator, expected = triplet
op = Operation(
operator=operator,
arguments=[
Comparison(comparator=Comparator.LT, attribute="foo", value=2),
Comparison(comparator=Comparator.EQ, attribute="bar", value="baz"),
],
)
actual = DEFAULT_TRANSLATOR.visit_operation(op)
assert expected == actual