mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
[Community] - Added bind_tools and with_structured_output for ChatZhipuAI (#23887)
- **Description:** This PR implements the `bind_tool` functionality for ChatZhipuAI as requested by the user. ChatZhipuAI models support tool calling according to the `OpenAI` tool format, as outlined in their official documentation [here](https://open.bigmodel.cn/dev/api#glm-4). - **Issue:** ##23868 --------- Co-authored-by: ccurme <chester.curme@gmail.com>
This commit is contained in:
parent
420534c8ca
commit
9927a4866d
@ -7,12 +7,25 @@ import logging
|
||||
import time
|
||||
from collections.abc import AsyncIterator, Iterator
|
||||
from contextlib import asynccontextmanager, contextmanager
|
||||
from typing import Any, Dict, List, Optional, Tuple, Type, Union
|
||||
from operator import itemgetter
|
||||
from typing import (
|
||||
Any,
|
||||
Callable,
|
||||
Dict,
|
||||
List,
|
||||
Literal,
|
||||
Optional,
|
||||
Sequence,
|
||||
Tuple,
|
||||
Type,
|
||||
Union,
|
||||
)
|
||||
|
||||
from langchain_core.callbacks import (
|
||||
AsyncCallbackManagerForLLMRun,
|
||||
CallbackManagerForLLMRun,
|
||||
)
|
||||
from langchain_core.language_models import LanguageModelInput
|
||||
from langchain_core.language_models.chat_models import (
|
||||
BaseChatModel,
|
||||
agenerate_from_stream,
|
||||
@ -30,9 +43,17 @@ from langchain_core.messages import (
|
||||
SystemMessage,
|
||||
SystemMessageChunk,
|
||||
)
|
||||
from langchain_core.output_parsers.base import OutputParserLike
|
||||
from langchain_core.output_parsers.openai_tools import (
|
||||
JsonOutputKeyToolsParser,
|
||||
PydanticToolsParser,
|
||||
)
|
||||
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
||||
from langchain_core.pydantic_v1 import BaseModel, Field, root_validator
|
||||
from langchain_core.runnables import Runnable, RunnableMap, RunnablePassthrough
|
||||
from langchain_core.tools import BaseTool
|
||||
from langchain_core.utils import get_from_dict_or_env
|
||||
from langchain_core.utils.function_calling import convert_to_openai_tool
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -40,6 +61,10 @@ API_TOKEN_TTL_SECONDS = 3 * 60
|
||||
ZHIPUAI_API_BASE = "https://open.bigmodel.cn/api/paas/v4/chat/completions"
|
||||
|
||||
|
||||
def _is_pydantic_class(obj: Any) -> bool:
|
||||
return isinstance(obj, type) and issubclass(obj, BaseModel)
|
||||
|
||||
|
||||
@contextmanager
|
||||
def connect_sse(client: Any, method: str, url: str, **kwargs: Any) -> Iterator:
|
||||
"""Context manager for connecting to an SSE stream.
|
||||
@ -587,3 +612,178 @@ class ChatZhipuAI(BaseChatModel):
|
||||
|
||||
if finish_reason is not None:
|
||||
break
|
||||
|
||||
def bind_tools(
|
||||
self,
|
||||
tools: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]],
|
||||
*,
|
||||
tool_choice: Optional[
|
||||
Union[dict, str, Literal["auto", "any", "none"], bool]
|
||||
] = None,
|
||||
**kwargs: Any,
|
||||
) -> Runnable[LanguageModelInput, BaseMessage]:
|
||||
"""Bind tool-like objects to this chat model.
|
||||
Args:
|
||||
tools: A list of tool definitions to bind to this chat model.
|
||||
Can be a dictionary, pydantic model, callable, or BaseTool. Pydantic
|
||||
models, callables, and BaseTools will be automatically converted to
|
||||
their schema dictionary representation.
|
||||
tool_choice: Currently this can only be auto for this chat model.
|
||||
**kwargs: Any additional parameters to pass to the
|
||||
:class:`~langchain.runnable.Runnable` constructor.
|
||||
"""
|
||||
if self.model_name == "glm-4v":
|
||||
raise ValueError("glm-4v currently does not support tool calling")
|
||||
|
||||
formatted_tools = [convert_to_openai_tool(tool) for tool in tools]
|
||||
if tool_choice and tool_choice != "auto":
|
||||
raise ValueError("ChatZhipuAI currently only supports `auto` tool choice")
|
||||
elif tool_choice and tool_choice == "auto":
|
||||
kwargs["tool_choice"] = tool_choice
|
||||
return self.bind(tools=formatted_tools, **kwargs)
|
||||
|
||||
def with_structured_output(
|
||||
self,
|
||||
schema: Optional[Union[Dict, Type[BaseModel]]] = None,
|
||||
*,
|
||||
method: Literal["function_calling", "json_mode"] = "function_calling",
|
||||
include_raw: bool = False,
|
||||
**kwargs: Any,
|
||||
) -> Runnable[LanguageModelInput, Union[Dict, BaseModel]]:
|
||||
"""Model wrapper that returns outputs formatted to match the given schema.
|
||||
|
||||
Args:
|
||||
schema: The output schema as a dict or a Pydantic class. If a Pydantic class
|
||||
then the model output will be an object of that class. If a dict then
|
||||
the model output will be a dict. With a Pydantic class the returned
|
||||
attributes will be validated, whereas with a dict they will not be. If
|
||||
`method` is "function_calling" and `schema` is a dict, then the dict
|
||||
must match the OpenAI function-calling spec.
|
||||
method: The method for steering model generation, either "function_calling"
|
||||
or "json_mode". ZhipuAI only supports "function_calling" which
|
||||
converts the schema to a OpenAI function and the model will make use of the
|
||||
function-calling API.
|
||||
include_raw: If False then only the parsed structured output is returned. If
|
||||
an error occurs during model output parsing it will be raised. If True
|
||||
then both the raw model response (a BaseMessage) and the parsed model
|
||||
response will be returned. If an error occurs during output parsing it
|
||||
will be caught and returned as well. The final output is always a dict
|
||||
with keys "raw", "parsed", and "parsing_error".
|
||||
|
||||
Returns:
|
||||
A Runnable that takes any ChatModel input and returns as output:
|
||||
|
||||
If include_raw is True then a dict with keys:
|
||||
raw: BaseMessage
|
||||
parsed: Optional[_DictOrPydantic]
|
||||
parsing_error: Optional[BaseException]
|
||||
|
||||
If include_raw is False then just _DictOrPydantic is returned,
|
||||
where _DictOrPydantic depends on the schema:
|
||||
|
||||
If schema is a Pydantic class then _DictOrPydantic is the Pydantic
|
||||
class.
|
||||
|
||||
If schema is a dict then _DictOrPydantic is a dict.
|
||||
|
||||
Example: Function-calling, Pydantic schema (method="function_calling", include_raw=False):
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_community.chat_models import ChatZhipuAI
|
||||
from langchain_core.pydantic_v1 import BaseModel
|
||||
|
||||
class AnswerWithJustification(BaseModel):
|
||||
'''An answer to the user question along with justification for the answer.'''
|
||||
answer: str
|
||||
justification: str
|
||||
|
||||
llm = ChatZhipuAI(temperature=0)
|
||||
structured_llm = llm.with_structured_output(AnswerWithJustification)
|
||||
|
||||
structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
|
||||
# -> AnswerWithJustification(
|
||||
# answer='A pound of bricks and a pound of feathers weigh the same.'
|
||||
# justification="Both a pound of bricks and a pound of feathers have been defined to have the same weight. The 'pound' is a unit of weight, so any two things that are described as weighing a pound will weigh the same."
|
||||
# )
|
||||
|
||||
Example: Function-calling, Pydantic schema (method="function_calling", include_raw=True):
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_community.chat_models import ChatZhipuAI
|
||||
from langchain_core.pydantic_v1 import BaseModel
|
||||
|
||||
class AnswerWithJustification(BaseModel):
|
||||
'''An answer to the user question along with justification for the answer.'''
|
||||
answer: str
|
||||
justification: str
|
||||
|
||||
llm = ChatZhipuAI(temperature=0)
|
||||
structured_llm = llm.with_structured_output(AnswerWithJustification, include_raw=True)
|
||||
|
||||
structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
|
||||
# -> {
|
||||
# 'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_01htjn3cspevxbqc1d7nkk8wab', 'function': {'arguments': '{"answer": "A pound of bricks and a pound of feathers weigh the same.", "justification": "Both a pound of bricks and a pound of feathers have been defined to have the same weight. The \'pound\' is a unit of weight, so any two things that are described as weighing a pound will weigh the same.", "unit": "pounds"}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}, id='run-456beee6-65f6-4e80-88af-a6065480822c-0'),
|
||||
# 'parsed': AnswerWithJustification(answer='A pound of bricks and a pound of feathers weigh the same.', justification="Both a pound of bricks and a pound of feathers have been defined to have the same weight. The 'pound' is a unit of weight, so any two things that are described as weighing a pound will weigh the same."),
|
||||
# 'parsing_error': None
|
||||
# }
|
||||
|
||||
Example: Function-calling, dict schema (method="function_calling", include_raw=False):
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_community.chat_models import ChatZhipuAI
|
||||
from langchain_core.pydantic_v1 import BaseModel
|
||||
from langchain_core.utils.function_calling import convert_to_openai_tool
|
||||
|
||||
class AnswerWithJustification(BaseModel):
|
||||
'''An answer to the user question along with justification for the answer.'''
|
||||
answer: str
|
||||
justification: str
|
||||
|
||||
dict_schema = convert_to_openai_tool(AnswerWithJustification)
|
||||
llm = ChatZhipuAI(temperature=0)
|
||||
structured_llm = llm.with_structured_output(dict_schema)
|
||||
|
||||
structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
|
||||
# -> {
|
||||
# 'answer': 'A pound of bricks and a pound of feathers weigh the same.',
|
||||
# 'justification': "Both a pound of bricks and a pound of feathers have been defined to have the same weight. The 'pound' is a unit of weight, so any two things that are described as weighing a pound will weigh the same.", 'unit': 'pounds'}
|
||||
# }
|
||||
|
||||
""" # noqa: E501
|
||||
if kwargs:
|
||||
raise ValueError(f"Received unsupported arguments {kwargs}")
|
||||
is_pydantic_schema = _is_pydantic_class(schema)
|
||||
if method == "function_calling":
|
||||
if schema is None:
|
||||
raise ValueError(
|
||||
"schema must be specified when method is 'function_calling'. "
|
||||
"Received None."
|
||||
)
|
||||
tool_name = convert_to_openai_tool(schema)["function"]["name"]
|
||||
llm = self.bind_tools([schema], tool_choice="auto")
|
||||
if is_pydantic_schema:
|
||||
output_parser: OutputParserLike = PydanticToolsParser(
|
||||
tools=[schema], # type: ignore[list-item]
|
||||
first_tool_only=True, # type: ignore[list-item]
|
||||
)
|
||||
else:
|
||||
output_parser = JsonOutputKeyToolsParser(
|
||||
key_name=tool_name, first_tool_only=True
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"""Unrecognized method argument. Expected 'function_calling'.
|
||||
Received: '{method}'"""
|
||||
)
|
||||
|
||||
if include_raw:
|
||||
parser_assign = RunnablePassthrough.assign(
|
||||
parsed=itemgetter("raw") | output_parser, parsing_error=lambda _: None
|
||||
)
|
||||
parser_none = RunnablePassthrough.assign(parsed=lambda _: None)
|
||||
parser_with_fallback = parser_assign.with_fallbacks(
|
||||
[parser_none], exception_key="parsing_error"
|
||||
)
|
||||
return RunnableMap(raw=llm) | parser_with_fallback
|
||||
else:
|
||||
return llm | output_parser
|
||||
|
Loading…
Reference in New Issue
Block a user