core[patch]: support conversion of runnables to tools (#23992)

Open to other thoughts on UX.

string input:
```python
as_tool = retriever.as_tool()
as_tool.invoke("cat")  # [Document(...), ...]
```

typed dict input:
```python
class Args(TypedDict):
    key: int

def f(x: Args) -> str:
    return str(x["key"] * 2)

as_tool = RunnableLambda(f).as_tool(
    name="my tool",
    description="description",  # name, description are inferred if not supplied
)
as_tool.invoke({"key": 3})  # "6"
```

for untyped dict input, allow specification of parameters + types
```python
def g(x: Dict[str, Any]) -> str:
    return str(x["key"] * 2)

as_tool = RunnableLambda(g).as_tool(arg_types={"key": int})
result = as_tool.invoke({"key": 3})  # "6"
```

Passing the `arg_types` is slightly awkward but necessary to ensure tool
calls populate parameters correctly:
```python
from typing import Any, Dict

from langchain_core.runnables import RunnableLambda
from langchain_openai import ChatOpenAI


def f(x: Dict[str, Any]) -> str:
    return str(x["key"] * 2)

runnable = RunnableLambda(f)
as_tool = runnable.as_tool(arg_types={"key": int})

llm = ChatOpenAI().bind_tools([as_tool])

result = llm.invoke("Use the tool on 3.")
tool_call = result.tool_calls[0]
args = tool_call["args"]
assert args == {"key": 3}

as_tool.run(args)
```

Contrived (?) example with langgraph agent as a tool:
```python
from typing import List, Literal
from typing_extensions import TypedDict

from langchain_openai import ChatOpenAI
from langgraph.prebuilt import create_react_agent


llm = ChatOpenAI(temperature=0)


def magic_function(input: int) -> int:
    """Applies a magic function to an input."""
    return input + 2


agent_1 = create_react_agent(llm, [magic_function])


class Message(TypedDict):
    role: Literal["human"]
    content: str

agent_tool = agent_1.as_tool(
    arg_types={"messages": List[Message]},
    name="Jeeves",
    description="Ask Jeeves.",
)

agent_2 = create_react_agent(llm, [agent_tool])
```

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
This commit is contained in:
ccurme 2024-07-10 19:29:59 -04:00 committed by GitHub
parent b63a48b7d3
commit 975b6129f6
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
7 changed files with 806 additions and 4 deletions

View File

@ -0,0 +1,541 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "9a8bceb3-95bd-4496-bb9e-57655136e070",
"metadata": {},
"source": [
"# How to use Runnables as Tools\n",
"\n",
":::info Prerequisites\n",
"\n",
"This guide assumes familiarity with the following concepts:\n",
"\n",
"- [Runnables](/docs/concepts#runnable-interface)\n",
"- [Tools](/docs/concepts#tools)\n",
"- [Agents](/docs/tutorials/agents)\n",
"\n",
":::\n",
"\n",
"Here we will demonstrate how to convert a LangChain `Runnable` into a tool that can be used by agents, chains, or chat models.\n",
"\n",
"## Dependencies\n",
"\n",
"**Note**: this guide requires `langchain-core` >= 0.2.13. We will also use [OpenAI](/docs/integrations/platforms/openai/) for embeddings, but any LangChain embeddings should suffice. We will use a simple [LangGraph](https://langchain-ai.github.io/langgraph/) agent for demonstration purposes."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "92341f48-2c29-4ce9-8ab8-0a7c7a7c98a1",
"metadata": {},
"outputs": [],
"source": [
"%%capture --no-stderr\n",
"%pip install -U langchain-core langchain-openai langgraph"
]
},
{
"cell_type": "markdown",
"id": "2b0dcc1a-48e8-4a81-b920-3563192ce076",
"metadata": {},
"source": [
"LangChain [tools](/docs/concepts#tools) are interfaces that an agent, chain, or chat model can use to interact with the world. See [here](/docs/how_to/#tools) for how-to guides covering tool-calling, built-in tools, custom tools, and more information.\n",
"\n",
"LangChain tools-- instances of [BaseTool](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.BaseTool.html)-- are [Runnables](/docs/concepts/#runnable-interface) with additional constraints that enable them to be invoked effectively by language models:\n",
"\n",
"- Their inputs are constrained to be serializable, specifically strings and Python `dict` objects;\n",
"- They contain names and descriptions indicating how and when they should be used;\n",
"- They may contain a detailed [args_schema](https://python.langchain.com/v0.2/docs/how_to/custom_tools/) for their arguments. That is, while a tool (as a `Runnable`) might accept a single `dict` input, the specific keys and type information needed to populate a dict should be specified in the `args_schema`.\n",
"\n",
"Runnables that accept string or `dict` input can be converted to tools using the [as_tool](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.as_tool) method, which allows for the specification of names, descriptions, and additional schema information for arguments."
]
},
{
"cell_type": "markdown",
"id": "b4d76680-1b6b-4862-8c4f-22766a1d41f2",
"metadata": {},
"source": [
"## Basic usage\n",
"\n",
"With typed `dict` input:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "b2cc4231-64a3-4733-a284-932dcbf2fcc3",
"metadata": {},
"outputs": [],
"source": [
"from typing import List\n",
"\n",
"from langchain_core.runnables import RunnableLambda\n",
"from typing_extensions import TypedDict\n",
"\n",
"\n",
"class Args(TypedDict):\n",
" a: int\n",
" b: List[int]\n",
"\n",
"\n",
"def f(x: Args) -> str:\n",
" return str(x[\"a\"] * max(x[\"b\"]))\n",
"\n",
"\n",
"runnable = RunnableLambda(f)\n",
"as_tool = runnable.as_tool(\n",
" name=\"My tool\",\n",
" description=\"Explanation of when to use tool.\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "57f2d435-624d-459a-903d-8509fbbde610",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Explanation of when to use tool.\n"
]
},
{
"data": {
"text/plain": [
"{'title': 'My tool',\n",
" 'type': 'object',\n",
" 'properties': {'a': {'title': 'A', 'type': 'integer'},\n",
" 'b': {'title': 'B', 'type': 'array', 'items': {'type': 'integer'}}},\n",
" 'required': ['a', 'b']}"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print(as_tool.description)\n",
"\n",
"as_tool.args_schema.schema()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "54ae7384-a03d-4fa4-8cdf-9604a4bc39ee",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'6'"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"as_tool.invoke({\"a\": 3, \"b\": [1, 2]})"
]
},
{
"cell_type": "markdown",
"id": "9038f587-4613-4f50-b349-135f9e7e3b15",
"metadata": {},
"source": [
"Without typing information, arg types can be specified via `arg_types`:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "169f733c-4936-497f-8577-ee769dc16b88",
"metadata": {},
"outputs": [],
"source": [
"from typing import Any, Dict\n",
"\n",
"\n",
"def g(x: Dict[str, Any]) -> str:\n",
" return str(x[\"a\"] * max(x[\"b\"]))\n",
"\n",
"\n",
"runnable = RunnableLambda(g)\n",
"as_tool = runnable.as_tool(\n",
" name=\"My tool\",\n",
" description=\"Explanation of when to use tool.\",\n",
" arg_types={\"a\": int, \"b\": List[int]},\n",
")"
]
},
{
"cell_type": "markdown",
"id": "32b1a992-8997-4c98-8eb2-c9fe9431b799",
"metadata": {},
"source": [
"Alternatively, we can add typing information via [Runnable.with_types](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.with_types):"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "eb102705-89b7-48dc-9158-d36d5f98ae8e",
"metadata": {},
"outputs": [],
"source": [
"as_tool = runnable.with_types(input_type=Args).as_tool(\n",
" name=\"My tool\",\n",
" description=\"Explanation of when to use tool.\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "7c474d85-4e01-4fae-9bba-0c6c8c26475c",
"metadata": {},
"source": [
"String input is also supported:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "c475282a-58d6-4c2b-af7d-99b73b7d8a13",
"metadata": {},
"outputs": [],
"source": [
"def f(x: str) -> str:\n",
" return x + \"a\"\n",
"\n",
"\n",
"def g(x: str) -> str:\n",
" return x + \"z\"\n",
"\n",
"\n",
"runnable = RunnableLambda(f) | g\n",
"as_tool = runnable.as_tool()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "ad6d8d96-3a87-40bd-a2ac-44a8acde0a8e",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'baz'"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"as_tool.invoke(\"b\")"
]
},
{
"cell_type": "markdown",
"id": "89fdb3a7-d228-48f0-8f73-262af4febb58",
"metadata": {},
"source": [
"## In agents\n",
"\n",
"Below we will incorporate LangChain Runnables as tools in an [agent](/docs/concepts/#agents) application. We will demonstrate with:\n",
"\n",
"- a document [retriever](/docs/concepts/#retrievers);\n",
"- a simple [RAG](/docs/tutorials/rag/) chain, allowing an agent to delegate relevant queries to it.\n",
"\n",
"We first instantiate a chat model that supports [tool calling](/docs/how_to/tool_calling/):\n",
"\n",
"```{=mdx}\n",
"<ChatModelTabs\n",
" customVarName=\"llm\"\n",
"/>\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "d06c9f2a-4475-450f-9106-54db1d99623b",
"metadata": {},
"outputs": [],
"source": [
"# | output: false\n",
"# | echo: false\n",
"\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0)"
]
},
{
"cell_type": "markdown",
"id": "e8a2038a-d762-4196-b5e3-fdb89c11e71d",
"metadata": {},
"source": [
"Following the [RAG tutorial](/docs/tutorials/rag/), let's first construct a retriever:"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "23d2a47e-6712-4294-81c8-2c1d76b4bb81",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.documents import Document\n",
"from langchain_core.vectorstores import InMemoryVectorStore\n",
"from langchain_openai import OpenAIEmbeddings\n",
"\n",
"documents = [\n",
" Document(\n",
" page_content=\"Dogs are great companions, known for their loyalty and friendliness.\",\n",
" ),\n",
" Document(\n",
" page_content=\"Cats are independent pets that often enjoy their own space.\",\n",
" ),\n",
"]\n",
"\n",
"vectorstore = InMemoryVectorStore.from_documents(\n",
" documents, embedding=OpenAIEmbeddings()\n",
")\n",
"\n",
"retriever = vectorstore.as_retriever(\n",
" search_type=\"similarity\",\n",
" search_kwargs={\"k\": 1},\n",
")"
]
},
{
"cell_type": "markdown",
"id": "9ba737ac-43a2-4a6f-b855-5bd0305017f1",
"metadata": {},
"source": [
"We next create use a simple pre-built [LangGraph agent](https://python.langchain.com/v0.2/docs/tutorials/agents/) and provide it the tool:"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "c939cf2a-60e9-4afd-8b47-84d76ccb13f5",
"metadata": {},
"outputs": [],
"source": [
"from langgraph.prebuilt import create_react_agent\n",
"\n",
"tools = [\n",
" retriever.as_tool(\n",
" name=\"pet_info_retriever\",\n",
" description=\"Get information about pets.\",\n",
" )\n",
"]\n",
"agent = create_react_agent(llm, tools)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "be29437b-a187-4a0a-9a5d-419c56f2434e",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'agent': {'messages': [AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_W8cnfOjwqEn4cFcg19LN9mYD', 'function': {'arguments': '{\"__arg1\":\"dogs\"}', 'name': 'pet_info_retriever'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 19, 'prompt_tokens': 60, 'total_tokens': 79}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-d7f81de9-1fb7-4caf-81ed-16dcdb0b2ab4-0', tool_calls=[{'name': 'pet_info_retriever', 'args': {'__arg1': 'dogs'}, 'id': 'call_W8cnfOjwqEn4cFcg19LN9mYD'}], usage_metadata={'input_tokens': 60, 'output_tokens': 19, 'total_tokens': 79})]}}\n",
"----\n",
"{'tools': {'messages': [ToolMessage(content=\"[Document(id='86f835fe-4bbe-4ec6-aeb4-489a8b541707', page_content='Dogs are great companions, known for their loyalty and friendliness.')]\", name='pet_info_retriever', tool_call_id='call_W8cnfOjwqEn4cFcg19LN9mYD')]}}\n",
"----\n",
"{'agent': {'messages': [AIMessage(content='Dogs are known for being great companions, known for their loyalty and friendliness.', response_metadata={'token_usage': {'completion_tokens': 18, 'prompt_tokens': 134, 'total_tokens': 152}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-9ca5847a-a5eb-44c0-a774-84cc2c5bbc5b-0', usage_metadata={'input_tokens': 134, 'output_tokens': 18, 'total_tokens': 152})]}}\n",
"----\n"
]
}
],
"source": [
"for chunk in agent.stream({\"messages\": [(\"human\", \"What are dogs known for?\")]}):\n",
" print(chunk)\n",
" print(\"----\")"
]
},
{
"cell_type": "markdown",
"id": "96f2ac9c-36f4-4b7a-ae33-f517734c86aa",
"metadata": {},
"source": [
"See [LangSmith trace](https://smith.langchain.com/public/44e438e3-2faf-45bd-b397-5510fc145eb9/r) for the above run."
]
},
{
"cell_type": "markdown",
"id": "a722fd8a-b957-4ba7-b408-35596b76835f",
"metadata": {},
"source": [
"Going further, we can create a simple [RAG](/docs/tutorials/rag/) chain that takes an additional parameter-- here, the \"style\" of the answer."
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "bea518c9-c711-47c2-b8cc-dbd102f71f09",
"metadata": {},
"outputs": [],
"source": [
"from operator import itemgetter\n",
"\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_core.runnables import RunnablePassthrough\n",
"\n",
"system_prompt = \"\"\"\n",
"You are an assistant for question-answering tasks.\n",
"Use the below context to answer the question. If\n",
"you don't know the answer, say you don't know.\n",
"Use three sentences maximum and keep the answer\n",
"concise.\n",
"\n",
"Answer in the style of {answer_style}.\n",
"\n",
"Question: {question}\n",
"\n",
"Context: {context}\n",
"\"\"\"\n",
"\n",
"prompt = ChatPromptTemplate.from_messages([(\"system\", system_prompt)])\n",
"\n",
"rag_chain = (\n",
" {\n",
" \"context\": itemgetter(\"question\") | retriever,\n",
" \"question\": itemgetter(\"question\"),\n",
" \"answer_style\": itemgetter(\"answer_style\"),\n",
" }\n",
" | prompt\n",
" | llm\n",
" | StrOutputParser()\n",
")"
]
},
{
"cell_type": "markdown",
"id": "955a23db-5218-4c34-8486-450a2ddb3443",
"metadata": {},
"source": [
"Note that the input schema for our chain contains the required arguments, so it converts to a tool without further specification:"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "2c9f6e61-80ed-4abb-8e77-84de3ccbc891",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'title': 'RunnableParallel<context,question,answer_style>Input',\n",
" 'type': 'object',\n",
" 'properties': {'question': {'title': 'Question'},\n",
" 'answer_style': {'title': 'Answer Style'}}}"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"rag_chain.input_schema.schema()"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "a3f9cf5b-8c71-4b0f-902b-f92e028780c9",
"metadata": {},
"outputs": [],
"source": [
"rag_tool = rag_chain.as_tool(\n",
" name=\"pet_expert\",\n",
" description=\"Get information about pets.\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "4570615b-8f96-4d97-ae01-1c08b14be584",
"metadata": {},
"source": [
"Below we again invoke the agent. Note that the agent populates the required parameters in its `tool_calls`:"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "06409913-a2ad-400f-a202-7b8dd2ef483a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'agent': {'messages': [AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_17iLPWvOD23zqwd1QVQ00Y63', 'function': {'arguments': '{\"question\":\"What are dogs known for according to pirates?\",\"answer_style\":\"quote\"}', 'name': 'pet_expert'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 28, 'prompt_tokens': 59, 'total_tokens': 87}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-7fef44f3-7bba-4e63-8c51-2ad9c5e65e2e-0', tool_calls=[{'name': 'pet_expert', 'args': {'question': 'What are dogs known for according to pirates?', 'answer_style': 'quote'}, 'id': 'call_17iLPWvOD23zqwd1QVQ00Y63'}], usage_metadata={'input_tokens': 59, 'output_tokens': 28, 'total_tokens': 87})]}}\n",
"----\n",
"{'tools': {'messages': [ToolMessage(content='\"Dogs are known for their loyalty and friendliness, making them great companions for pirates on long sea voyages.\"', name='pet_expert', tool_call_id='call_17iLPWvOD23zqwd1QVQ00Y63')]}}\n",
"----\n",
"{'agent': {'messages': [AIMessage(content='According to pirates, dogs are known for their loyalty and friendliness, making them great companions for pirates on long sea voyages.', response_metadata={'token_usage': {'completion_tokens': 27, 'prompt_tokens': 119, 'total_tokens': 146}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-5a30edc3-7be0-4743-b980-ca2f8cad9b8d-0', usage_metadata={'input_tokens': 119, 'output_tokens': 27, 'total_tokens': 146})]}}\n",
"----\n"
]
}
],
"source": [
"agent = create_react_agent(llm, [rag_tool])\n",
"\n",
"for chunk in agent.stream(\n",
" {\"messages\": [(\"human\", \"What would a pirate say dogs are known for?\")]}\n",
"):\n",
" print(chunk)\n",
" print(\"----\")"
]
},
{
"cell_type": "markdown",
"id": "96cc9bc3-e79e-49a8-9915-428ea225358b",
"metadata": {},
"source": [
"See [LangSmith trace](https://smith.langchain.com/public/147ae4e6-4dfb-4dd9-8ca0-5c5b954f08ac/r) for the above run."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.4"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -187,6 +187,7 @@ LangChain [Tools](/docs/concepts/#tools) contain a description of the tool (to p
- [How to: create custom tools](/docs/how_to/custom_tools)
- [How to: use built-in tools and built-in toolkits](/docs/how_to/tools_builtin)
- [How to: convert Runnables to tools](/docs/how_to/convert_runnable_to_tool)
- [How to: use chat model to call tools](/docs/how_to/tool_calling)
- [How to: pass tool results back to model](/docs/how_to/tool_results_pass_to_model)
- [How to: add ad-hoc tool calling capability to LLMs and chat models](/docs/how_to/tools_prompting)

View File

@ -234,7 +234,7 @@ class E2BDataAnalysisTool(BaseTool):
]
self.description = self.description + "\n" + self.uploaded_files_description
def as_tool(self) -> Tool:
def as_tool(self) -> Tool: # type: ignore[override]
return Tool.from_function(
func=self._run,
name=self.name,

View File

@ -92,6 +92,7 @@ if TYPE_CHECKING:
from langchain_core.runnables.fallbacks import (
RunnableWithFallbacks as RunnableWithFallbacksT,
)
from langchain_core.tools import BaseTool
from langchain_core.tracers.log_stream import (
RunLog,
RunLogPatch,
@ -2006,6 +2007,78 @@ class Runnable(Generic[Input, Output], ABC):
if hasattr(iterator_, "aclose"):
await iterator_.aclose()
@beta_decorator.beta(message="This API is in beta and may change in the future.")
def as_tool(
self,
*,
name: Optional[str] = None,
description: Optional[str] = None,
arg_types: Optional[Dict[str, Type]] = None,
) -> BaseTool:
"""Create a BaseTool from a Runnable.
``as_tool`` will instantiate a BaseTool with a name, description, and
``args_schema`` from a runnable. Where possible, schemas are inferred
from ``runnable.get_input_schema``. Alternatively (e.g., if the
runnable takes a dict as input and the specific dict keys are not typed),
pass ``arg_types`` to specify the required arguments.
Typed dict input:
.. code-block:: python
from typing import List
from typing_extensions import TypedDict
from langchain_core.runnables import RunnableLambda
class Args(TypedDict):
a: int
b: List[int]
def f(x: Args) -> str:
return str(x["a"] * max(x["b"]))
runnable = RunnableLambda(f)
as_tool = runnable.as_tool()
as_tool.invoke({"a": 3, "b": [1, 2]})
``dict`` input, specifying schema:
.. code-block:: python
from typing import Any, Dict, List
from langchain_core.runnables import RunnableLambda
def f(x: Dict[str, Any]) -> str:
return str(x["a"] * max(x["b"]))
runnable = RunnableLambda(f)
as_tool = runnable.as_tool(arg_types={"a": int, "b": List[int]})
as_tool.invoke({"a": 3, "b": [1, 2]})
String input:
.. code-block:: python
from langchain_core.runnables import RunnableLambda
def f(x: str) -> str:
return x + "a"
def g(x: str) -> str:
return x + "z"
runnable = RunnableLambda(f) | g
as_tool = runnable.as_tool()
as_tool.invoke("b")
"""
# Avoid circular import
from langchain_core.tools import convert_runnable_to_tool
return convert_runnable_to_tool(
self, name=name, description=description, arg_types=arg_types
)
class RunnableSerializable(Serializable, Runnable[Input, Output]):
"""Runnable that can be serialized to JSON."""

View File

@ -39,6 +39,7 @@ from typing import (
Tuple,
Type,
Union,
get_type_hints,
)
from typing_extensions import Annotated, get_args, get_origin
@ -1218,3 +1219,76 @@ class BaseToolkit(BaseModel, ABC):
@abstractmethod
def get_tools(self) -> List[BaseTool]:
"""Get the tools in the toolkit."""
def _get_description_from_runnable(runnable: Runnable) -> str:
"""Generate a placeholder description of a runnable."""
input_schema = runnable.input_schema.schema()
return f"Takes {input_schema}."
def _get_schema_from_runnable_and_arg_types(
runnable: Runnable,
name: str,
arg_types: Optional[Dict[str, Type]] = None,
) -> Type[BaseModel]:
"""Infer args_schema for tool."""
if arg_types is None:
try:
arg_types = get_type_hints(runnable.InputType)
except TypeError as e:
raise TypeError(
"Tool input must be str or dict. If dict, dict arguments must be "
"typed. Either annotate types (e.g., with TypedDict) or pass "
f"arg_types into `.as_tool` to specify. {str(e)}"
)
fields = {key: (key_type, Field(...)) for key, key_type in arg_types.items()}
return create_model(name, **fields) # type: ignore
def convert_runnable_to_tool(
runnable: Runnable,
name: Optional[str] = None,
description: Optional[str] = None,
arg_types: Optional[Dict[str, Type]] = None,
) -> BaseTool:
"""Convert a Runnable into a BaseTool."""
description = description or _get_description_from_runnable(runnable)
name = name or runnable.get_name()
schema = runnable.input_schema.schema()
if schema.get("type") == "string":
return Tool(
name=name,
func=runnable.invoke,
coroutine=runnable.ainvoke,
description=description,
)
else:
async def ainvoke_wrapper(
callbacks: Optional[Callbacks] = None, **kwargs: Any
) -> Any:
return await runnable.ainvoke(kwargs, config={"callbacks": callbacks})
def invoke_wrapper(callbacks: Optional[Callbacks] = None, **kwargs: Any) -> Any:
return runnable.invoke(kwargs, config={"callbacks": callbacks})
if (
arg_types is None
and schema.get("type") == "object"
and schema.get("properties")
):
args_schema = runnable.input_schema
else:
args_schema = _get_schema_from_runnable_and_arg_types(
runnable, name, arg_types=arg_types
)
return StructuredTool.from_function(
name=name,
func=invoke_wrapper,
coroutine=ainvoke_wrapper,
description=description,
args_schema=args_schema,
)

View File

@ -11,14 +11,14 @@ from functools import partial
from typing import Any, Callable, Dict, List, Optional, Type, Union
import pytest
from typing_extensions import Annotated
from typing_extensions import Annotated, TypedDict
from langchain_core.callbacks import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain_core.pydantic_v1 import BaseModel, ValidationError
from langchain_core.runnables import ensure_config
from langchain_core.runnables import Runnable, RunnableLambda, ensure_config
from langchain_core.tools import (
BaseTool,
SchemaAnnotationError,
@ -987,3 +987,85 @@ def test_tool_annotated_descriptions() -> None:
},
"required": ["bar", "baz"],
}
def test_convert_from_runnable_dict() -> None:
# Test with typed dict input
class Args(TypedDict):
a: int
b: List[int]
def f(x: Args) -> str:
return str(x["a"] * max(x["b"]))
runnable: Runnable = RunnableLambda(f)
as_tool = runnable.as_tool()
args_schema = as_tool.args_schema
assert args_schema is not None
assert args_schema.schema() == {
"title": "f",
"type": "object",
"properties": {
"a": {"title": "A", "type": "integer"},
"b": {"title": "B", "type": "array", "items": {"type": "integer"}},
},
"required": ["a", "b"],
}
assert as_tool.description
result = as_tool.invoke({"a": 3, "b": [1, 2]})
assert result == "6"
as_tool = runnable.as_tool(name="my tool", description="test description")
assert as_tool.name == "my tool"
assert as_tool.description == "test description"
# Dict without typed input-- must supply arg types
def g(x: Dict[str, Any]) -> str:
return str(x["a"] * max(x["b"]))
runnable = RunnableLambda(g)
as_tool = runnable.as_tool(arg_types={"a": int, "b": List[int]})
result = as_tool.invoke({"a": 3, "b": [1, 2]})
assert result == "6"
# Test with config
def h(x: Dict[str, Any]) -> str:
config = ensure_config()
assert config["configurable"]["foo"] == "not-bar"
return str(x["a"] * max(x["b"]))
runnable = RunnableLambda(h)
as_tool = runnable.as_tool(arg_types={"a": int, "b": List[int]})
result = as_tool.invoke(
{"a": 3, "b": [1, 2]}, config={"configurable": {"foo": "not-bar"}}
)
assert result == "6"
def test_convert_from_runnable_other() -> None:
# String input
def f(x: str) -> str:
return x + "a"
def g(x: str) -> str:
return x + "z"
runnable: Runnable = RunnableLambda(f) | g
as_tool = runnable.as_tool()
args_schema = as_tool.args_schema
assert args_schema is None
assert as_tool.description
result = as_tool.invoke("b")
assert result == "baz"
# Test with config
def h(x: str) -> str:
config = ensure_config()
assert config["configurable"]["foo"] == "not-bar"
return x + "a"
runnable = RunnableLambda(h)
as_tool = runnable.as_tool()
result = as_tool.invoke("b", config={"configurable": {"foo": "not-bar"}})
assert result == "ba"

View File

@ -4,10 +4,11 @@ from typing import Any, Callable, Dict, List, Literal, Optional, Type
import pytest
from pydantic import BaseModel as BaseModelV2Maybe # pydantic: ignore
from pydantic import Field as FieldV2Maybe # pydantic: ignore
from typing_extensions import Annotated
from typing_extensions import Annotated, TypedDict
from langchain_core.messages import AIMessage, HumanMessage, ToolMessage
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.runnables import Runnable, RunnableLambda
from langchain_core.tools import BaseTool, tool
from langchain_core.utils.function_calling import (
convert_to_openai_function,
@ -52,6 +53,18 @@ def function() -> Callable:
return dummy_function
@pytest.fixture()
def runnable() -> Runnable:
class Args(TypedDict):
arg1: Annotated[int, "foo"]
arg2: Annotated[Literal["bar", "baz"], "one of 'bar', 'baz'"]
def dummy_function(input_dict: Args) -> None:
pass
return RunnableLambda(dummy_function)
@pytest.fixture()
def dummy_tool() -> BaseTool:
class Schema(BaseModel):
@ -141,6 +154,7 @@ def test_convert_to_openai_function(
json_schema: Dict,
annotated_function: Callable,
dummy_pydantic: Type[BaseModel],
runnable: Runnable,
) -> None:
expected = {
"name": "dummy_function",
@ -173,6 +187,23 @@ def test_convert_to_openai_function(
actual = convert_to_openai_function(fn) # type: ignore
assert actual == expected
# Test runnables
actual = convert_to_openai_function(runnable.as_tool(description="dummy function"))
parameters = {
"type": "object",
"properties": {
"arg1": {"type": "integer"},
"arg2": {
"enum": ["bar", "baz"],
"type": "string",
},
},
"required": ["arg1", "arg2"],
}
runnable_expected = expected.copy()
runnable_expected["parameters"] = parameters
assert actual == runnable_expected
def test_convert_to_openai_function_nested() -> None:
class Nested(BaseModel):