mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
Bedrock embeddings async methods (#9024)
## Description This PR adds the `aembed_query` and `aembed_documents` async methods for improving the embeddings generation for large documents. The implementation uses asyncio tasks and gather to achieve concurrency as there is no bedrock async API in boto3. ### Maintainers @agola11 @aarora79 ### Open questions To avoid throttling from the Bedrock API, should there be an option to limit the concurrency of the calls?
This commit is contained in:
parent
67ca187560
commit
8eea46ed0e
@ -31,12 +31,11 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.llms.bedrock import Bedrock\n",
|
||||
"from langchain.llms import Bedrock\n",
|
||||
"\n",
|
||||
"llm = Bedrock(\n",
|
||||
" credentials_profile_name=\"bedrock-admin\",\n",
|
||||
" model_id=\"amazon.titan-tg1-large\",\n",
|
||||
" endpoint_url=\"custom_endpoint_url\",\n",
|
||||
" model_id=\"amazon.titan-tg1-large\"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
|
@ -20,7 +20,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"execution_count": 5,
|
||||
"id": "282239c8-e03a-4abc-86c1-ca6120231a20",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@ -28,7 +28,7 @@
|
||||
"from langchain.embeddings import BedrockEmbeddings\n",
|
||||
"\n",
|
||||
"embeddings = BedrockEmbeddings(\n",
|
||||
" credentials_profile_name=\"bedrock-admin\", endpoint_url=\"custom_endpoint_url\"\n",
|
||||
" credentials_profile_name=\"bedrock-admin\", region_name=\"us-east-1\"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
@ -49,7 +49,29 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"embeddings.embed_documents([\"This is a content of the document\"])"
|
||||
"embeddings.embed_documents([\"This is a content of the document\", \"This is another document\"])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "9f6b364d",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# async embed query\n",
|
||||
"await embeddings.aembed_query(\"This is a content of the document\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "c9240a5a",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# async embed documents\n",
|
||||
"await embeddings.aembed_documents([\"This is a content of the document\", \"This is another document\"])"
|
||||
]
|
||||
}
|
||||
],
|
||||
@ -69,7 +91,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.11"
|
||||
"version": "3.9.13"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
@ -1,5 +1,7 @@
|
||||
import asyncio
|
||||
import json
|
||||
import os
|
||||
from functools import partial
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from pydantic import BaseModel, Extra, root_validator
|
||||
@ -128,17 +130,11 @@ class BedrockEmbeddings(BaseModel, Embeddings):
|
||||
except Exception as e:
|
||||
raise ValueError(f"Error raised by inference endpoint: {e}")
|
||||
|
||||
def embed_documents(
|
||||
self, texts: List[str], chunk_size: int = 1
|
||||
) -> List[List[float]]:
|
||||
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||||
"""Compute doc embeddings using a Bedrock model.
|
||||
|
||||
Args:
|
||||
texts: The list of texts to embed.
|
||||
chunk_size: Bedrock currently only allows single string
|
||||
inputs, so chunk size is always 1. This input is here
|
||||
only for compatibility with the embeddings interface.
|
||||
|
||||
texts: The list of texts to embed
|
||||
|
||||
Returns:
|
||||
List of embeddings, one for each text.
|
||||
@ -159,3 +155,31 @@ class BedrockEmbeddings(BaseModel, Embeddings):
|
||||
Embeddings for the text.
|
||||
"""
|
||||
return self._embedding_func(text)
|
||||
|
||||
async def aembed_query(self, text: str) -> List[float]:
|
||||
"""Asynchronous compute query embeddings using a Bedrock model.
|
||||
|
||||
Args:
|
||||
text: The text to embed.
|
||||
|
||||
Returns:
|
||||
Embeddings for the text.
|
||||
"""
|
||||
|
||||
return await asyncio.get_running_loop().run_in_executor(
|
||||
None, partial(self.embed_query, text)
|
||||
)
|
||||
|
||||
async def aembed_documents(self, texts: List[str]) -> List[List[float]]:
|
||||
"""Asynchronous compute doc embeddings using a Bedrock model.
|
||||
|
||||
Args:
|
||||
texts: The list of texts to embed
|
||||
|
||||
Returns:
|
||||
List of embeddings, one for each text.
|
||||
"""
|
||||
|
||||
result = await asyncio.gather(*[self.aembed_query(text) for text in texts])
|
||||
|
||||
return list(result)
|
||||
|
Loading…
Reference in New Issue
Block a user