adding .ipynb loader and documentation Fixes #1248 (#1252)

`NotebookLoader.load()` loads the `.ipynb` notebook file into a
`Document` object.

**Parameters**:

* `include_outputs` (bool): whether to include cell outputs in the
resulting document (default is False).
* `max_output_length` (int): the maximum number of characters to include
from each cell output (default is 10).
* `remove_newline` (bool): whether to remove newline characters from the
cell sources and outputs (default is False).
* `traceback` (bool): whether to include full traceback (default is
False).
This commit is contained in:
Klein Tahiraj 2023-02-24 16:10:35 +01:00 committed by GitHub
parent 4b5d427421
commit 8a0751dadd
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 270 additions and 0 deletions

View File

@ -0,0 +1,83 @@
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Notebook\n",
"\n",
"This notebook covers how to load data from an .ipynb notebook into a format suitable by LangChain."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.document_loaders import NotebookLoader"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"loader = NotebookLoader(\"example_data/notebook.ipynb\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"`NotebookLoader.load()` loads the `.ipynb` notebook file into a `Document` object.\n",
"\n",
"**Parameters**:\n",
"\n",
"* `include_outputs` (bool): whether to include cell outputs in the resulting document (default is False).\n",
"* `max_output_length` (int): the maximum number of characters to include from each cell output (default is 10).\n",
"* `remove_newline` (bool): whether to remove newline characters from the cell sources and outputs (default is False).\n",
"* `traceback` (bool): whether to include full traceback (default is False)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"loader.load(include_outputs=True, max_output_length=20, remove_newline=True)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.1"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "981b6680a42bdb5eb22187741e1607b3aae2cf73db800d1af1f268d1de6a1f70"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@ -0,0 +1,83 @@
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Notebook\n",
"\n",
"This notebook covers how to load data from an .ipynb notebook into a format suitable by LangChain."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.document_loaders import NotebookLoader"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"loader = NotebookLoader(\"example_data/notebook.ipynb\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"`NotebookLoader.load()` loads the `.ipynb` notebook file into a `Document` object.\n",
"\n",
"**Parameters**:\n",
"\n",
"* `include_outputs` (bool): whether to include cell outputs in the resulting document (default is False).\n",
"* `max_output_length` (int): the maximum number of characters to include from each cell output (default is 10).\n",
"* `remove_newline` (bool): whether to remove newline characters from the cell sources and outputs (default is False).\n",
"* `traceback` (bool): whether to include full traceback (default is False)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"loader.load(include_outputs=True, max_output_length=20, remove_newline=True)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.1"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "981b6680a42bdb5eb22187741e1607b3aae2cf73db800d1af1f268d1de6a1f70"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@ -15,6 +15,7 @@ from langchain.document_loaders.gutenberg import GutenbergLoader
from langchain.document_loaders.hn import HNLoader
from langchain.document_loaders.html import UnstructuredHTMLLoader
from langchain.document_loaders.imsdb import IMSDbLoader
from langchain.document_loaders.notebook import NotebookLoader
from langchain.document_loaders.notion import NotionDirectoryLoader
from langchain.document_loaders.obsidian import ObsidianLoader
from langchain.document_loaders.online_pdf import OnlinePDFLoader
@ -71,4 +72,5 @@ __all__ = [
"PDFMinerLoader",
"TelegramChatLoader",
"SRTLoader",
"NotebookLoader",
]

View File

@ -0,0 +1,102 @@
"""Loader that loads .ipynb notebook files."""
import json
from pathlib import Path
from typing import Any, List
import pandas as pd
from langchain.docstore.document import Document
from langchain.document_loaders.base import BaseLoader
def concatenate_cells(
cell: dict, include_outputs: bool, max_output_length: int, traceback: bool
) -> str:
"""Combine cells information in a readable format ready to be used."""
cell_type = cell["cell_type"]
source = cell["source"]
output = cell["outputs"]
if include_outputs and cell_type == "code" and output:
if "ename" in output[0].keys():
error_name = output[0]["ename"]
error_value = output[0]["evalue"]
if traceback:
traceback = output[0]["traceback"]
return (
f"'{cell_type}' cell: '{source}'\n, gives error '{error_name}',"
f" with description '{error_value}'\n"
f"and traceback '{traceback}'\n\n"
)
else:
return (
f"'{cell_type}' cell: '{source}'\n, gives error '{error_name}',"
f"with description '{error_value}'\n\n"
)
elif output[0]["output_type"] == "stream":
output = output[0]["text"]
min_output = min(max_output_length, len(output))
return (
f"'{cell_type}' cell: '{source}'\n with "
f"output: '{output[:min_output]}'\n\n"
)
else:
return f"'{cell_type}' cell: '{source}'\n\n"
return ""
def remove_newlines(x: Any) -> Any:
"""Remove recursivelly newlines, no matter the data structure they are stored in."""
if isinstance(x, str):
return x.replace("\n", "")
elif isinstance(x, list):
return [remove_newlines(elem) for elem in x]
elif isinstance(x, pd.DataFrame):
return x.applymap(remove_newlines)
else:
return x
class NotebookLoader(BaseLoader):
"""Loader that loads .ipynb notebook files."""
def __init__(self, path: str):
"""Initialize with path."""
self.file_path = path
def load(
self,
include_outputs: bool = False,
max_output_length: int = 10,
remove_newline: bool = False,
traceback: bool = False,
) -> List[Document]:
"""Load documents."""
try:
import pandas as pd
except ImportError:
raise ValueError(
"pandas is needed for Notebook Loader, "
"please install with `pip install pandas`"
)
p = Path(self.file_path)
with open(p, encoding="utf8") as f:
d = json.load(f)
data = pd.json_normalize(d["cells"])
filtered_data = data[["cell_type", "source", "outputs"]]
if remove_newline:
filtered_data = filtered_data.applymap(remove_newlines)
text = filtered_data.apply(
lambda x: concatenate_cells(
x, include_outputs, max_output_length, traceback
),
axis=1,
).str.cat(sep=" ")
metadata = {"source": str(p)}
return [Document(page_content=text, metadata=metadata)]