mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
groq: Add tool calling support (#19971)
**Description:** Add with_structured_output to groq chat models **Issue:** **Dependencies:** N/A **Twitter handle:** N/A
This commit is contained in:
parent
6f20f140ca
commit
88cf8a2905
@ -358,13 +358,119 @@
|
||||
"model_with_structure.invoke(\"Tell me a joke about cats\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "6214781d",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Groq\n",
|
||||
"\n",
|
||||
"Groq provides an OpenAI-compatible function calling API"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "3066b2af",
|
||||
"execution_count": 11,
|
||||
"id": "70511bc3",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
"source": [
|
||||
"from langchain_groq import ChatGroq"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "6b7e97a6",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Function Calling\n",
|
||||
"\n",
|
||||
"By default, we will use `function_calling`"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"id": "be9fdf04",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"/Users/reag/src/langchain/libs/core/langchain_core/_api/beta_decorator.py:87: LangChainBetaWarning: The function `with_structured_output` is in beta. It is actively being worked on, so the API may change.\n",
|
||||
" warn_beta(\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"model = ChatGroq()\n",
|
||||
"model_with_structure = model.with_structured_output(Joke)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"id": "e13f4676",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"Joke(setup=\"Why don't cats play poker in the jungle?\", punchline='Too many cheetahs!')"
|
||||
]
|
||||
},
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"model_with_structure.invoke(\"Tell me a joke about cats\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "a82c2f55",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### JSON Mode\n",
|
||||
"\n",
|
||||
"We also support JSON mode. Note that we need to specify in the prompt the format that it should respond in."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"id": "86574fb8",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"model_with_structure = model.with_structured_output(Joke, method=\"json_mode\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"id": "01dced9c",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"Joke(setup=\"Why don't cats play poker in the jungle?\", punchline='Too many cheetahs!')"
|
||||
]
|
||||
},
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"model_with_structure.invoke(\n",
|
||||
" \"Tell me a joke about cats, respond in JSON with `setup` and `punchline` keys\"\n",
|
||||
")"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
|
@ -4,24 +4,31 @@ from __future__ import annotations
|
||||
|
||||
import os
|
||||
import warnings
|
||||
from operator import itemgetter
|
||||
from typing import (
|
||||
Any,
|
||||
AsyncIterator,
|
||||
Callable,
|
||||
Dict,
|
||||
Iterator,
|
||||
List,
|
||||
Literal,
|
||||
Mapping,
|
||||
Optional,
|
||||
Sequence,
|
||||
Tuple,
|
||||
Type,
|
||||
TypedDict,
|
||||
Union,
|
||||
cast,
|
||||
)
|
||||
|
||||
from langchain_core._api import beta
|
||||
from langchain_core.callbacks import (
|
||||
AsyncCallbackManagerForLLMRun,
|
||||
CallbackManagerForLLMRun,
|
||||
)
|
||||
from langchain_core.language_models import LanguageModelInput
|
||||
from langchain_core.language_models.chat_models import (
|
||||
BaseChatModel,
|
||||
agenerate_from_stream,
|
||||
@ -43,13 +50,28 @@ from langchain_core.messages import (
|
||||
ToolMessage,
|
||||
ToolMessageChunk,
|
||||
)
|
||||
from langchain_core.output_parsers import (
|
||||
JsonOutputParser,
|
||||
PydanticOutputParser,
|
||||
)
|
||||
from langchain_core.output_parsers.base import OutputParserLike
|
||||
from langchain_core.output_parsers.openai_tools import (
|
||||
JsonOutputKeyToolsParser,
|
||||
PydanticToolsParser,
|
||||
)
|
||||
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
||||
from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr, root_validator
|
||||
from langchain_core.runnables import Runnable, RunnableMap, RunnablePassthrough
|
||||
from langchain_core.tools import BaseTool
|
||||
from langchain_core.utils import (
|
||||
convert_to_secret_str,
|
||||
get_from_dict_or_env,
|
||||
get_pydantic_field_names,
|
||||
)
|
||||
from langchain_core.utils.function_calling import (
|
||||
convert_to_openai_function,
|
||||
convert_to_openai_tool,
|
||||
)
|
||||
|
||||
|
||||
class ChatGroq(BaseChatModel):
|
||||
@ -390,6 +412,334 @@ class ChatGroq(BaseChatModel):
|
||||
combined["system_fingerprint"] = system_fingerprint
|
||||
return combined
|
||||
|
||||
def bind_functions(
|
||||
self,
|
||||
functions: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]],
|
||||
function_call: Optional[
|
||||
Union[_FunctionCall, str, Literal["auto", "none"]]
|
||||
] = None,
|
||||
**kwargs: Any,
|
||||
) -> Runnable[LanguageModelInput, BaseMessage]:
|
||||
"""Bind functions (and other objects) to this chat model.
|
||||
|
||||
Model is compatible with OpenAI function-calling API.
|
||||
|
||||
NOTE: Using bind_tools is recommended instead, as the `functions` and
|
||||
`function_call` request parameters are officially deprecated.
|
||||
|
||||
Args:
|
||||
functions: A list of function definitions to bind to this chat model.
|
||||
Can be a dictionary, pydantic model, or callable. Pydantic
|
||||
models and callables will be automatically converted to
|
||||
their schema dictionary representation.
|
||||
function_call: Which function to require the model to call.
|
||||
Must be the name of the single provided function or
|
||||
"auto" to automatically determine which function to call
|
||||
(if any).
|
||||
**kwargs: Any additional parameters to pass to the
|
||||
:class:`~langchain.runnable.Runnable` constructor.
|
||||
"""
|
||||
|
||||
formatted_functions = [convert_to_openai_function(fn) for fn in functions]
|
||||
if function_call is not None:
|
||||
function_call = (
|
||||
{"name": function_call}
|
||||
if isinstance(function_call, str)
|
||||
and function_call not in ("auto", "none")
|
||||
else function_call
|
||||
)
|
||||
if isinstance(function_call, dict) and len(formatted_functions) != 1:
|
||||
raise ValueError(
|
||||
"When specifying `function_call`, you must provide exactly one "
|
||||
"function."
|
||||
)
|
||||
if (
|
||||
isinstance(function_call, dict)
|
||||
and formatted_functions[0]["name"] != function_call["name"]
|
||||
):
|
||||
raise ValueError(
|
||||
f"Function call {function_call} was specified, but the only "
|
||||
f"provided function was {formatted_functions[0]['name']}."
|
||||
)
|
||||
kwargs = {**kwargs, "function_call": function_call}
|
||||
return super().bind(
|
||||
functions=formatted_functions,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
def bind_tools(
|
||||
self,
|
||||
tools: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]],
|
||||
*,
|
||||
tool_choice: Optional[
|
||||
Union[dict, str, Literal["auto", "any", "none"], bool]
|
||||
] = None,
|
||||
**kwargs: Any,
|
||||
) -> Runnable[LanguageModelInput, BaseMessage]:
|
||||
"""Bind tool-like objects to this chat model.
|
||||
|
||||
Args:
|
||||
tools: A list of tool definitions to bind to this chat model.
|
||||
Can be a dictionary, pydantic model, callable, or BaseTool. Pydantic
|
||||
models, callables, and BaseTools will be automatically converted to
|
||||
their schema dictionary representation.
|
||||
tool_choice: Which tool to require the model to call.
|
||||
Must be the name of the single provided function,
|
||||
"auto" to automatically determine which function to call
|
||||
with the option to not call any function, "any" to enforce that some
|
||||
function is called, or a dict of the form:
|
||||
{"type": "function", "function": {"name": <<tool_name>>}}.
|
||||
**kwargs: Any additional parameters to pass to the
|
||||
:class:`~langchain.runnable.Runnable` constructor.
|
||||
"""
|
||||
|
||||
formatted_tools = [convert_to_openai_tool(tool) for tool in tools]
|
||||
if tool_choice is not None and tool_choice:
|
||||
if isinstance(tool_choice, str) and (
|
||||
tool_choice not in ("auto", "any", "none")
|
||||
):
|
||||
tool_choice = {"type": "function", "function": {"name": tool_choice}}
|
||||
if isinstance(tool_choice, dict) and (len(formatted_tools) != 1):
|
||||
raise ValueError(
|
||||
"When specifying `tool_choice`, you must provide exactly one "
|
||||
f"tool. Received {len(formatted_tools)} tools."
|
||||
)
|
||||
if isinstance(tool_choice, dict) and (
|
||||
formatted_tools[0]["function"]["name"]
|
||||
!= tool_choice["function"]["name"]
|
||||
):
|
||||
raise ValueError(
|
||||
f"Tool choice {tool_choice} was specified, but the only "
|
||||
f"provided tool was {formatted_tools[0]['function']['name']}."
|
||||
)
|
||||
if isinstance(tool_choice, bool):
|
||||
if len(tools) > 1:
|
||||
raise ValueError(
|
||||
"tool_choice can only be True when there is one tool. Received "
|
||||
f"{len(tools)} tools."
|
||||
)
|
||||
tool_name = formatted_tools[0]["function"]["name"]
|
||||
tool_choice = {
|
||||
"type": "function",
|
||||
"function": {"name": tool_name},
|
||||
}
|
||||
|
||||
kwargs["tool_choice"] = tool_choice
|
||||
return super().bind(tools=formatted_tools, **kwargs)
|
||||
|
||||
@beta()
|
||||
def with_structured_output(
|
||||
self,
|
||||
schema: Optional[Union[Dict, Type[BaseModel]]] = None,
|
||||
*,
|
||||
method: Literal["function_calling", "json_mode"] = "function_calling",
|
||||
include_raw: bool = False,
|
||||
**kwargs: Any,
|
||||
) -> Runnable[LanguageModelInput, Union[Dict, BaseModel]]:
|
||||
"""Model wrapper that returns outputs formatted to match the given schema.
|
||||
|
||||
Args:
|
||||
schema: The output schema as a dict or a Pydantic class. If a Pydantic class
|
||||
then the model output will be an object of that class. If a dict then
|
||||
the model output will be a dict. With a Pydantic class the returned
|
||||
attributes will be validated, whereas with a dict they will not be. If
|
||||
`method` is "function_calling" and `schema` is a dict, then the dict
|
||||
must match the OpenAI function-calling spec.
|
||||
method: The method for steering model generation, either "function_calling"
|
||||
or "json_mode". If "function_calling" then the schema will be converted
|
||||
to a OpenAI function and the returned model will make use of the
|
||||
function-calling API. If "json_mode" then Groq's JSON mode will be
|
||||
used. Note that if using "json_mode" then you must include instructions
|
||||
for formatting the output into the desired schema into the model call.
|
||||
include_raw: If False then only the parsed structured output is returned. If
|
||||
an error occurs during model output parsing it will be raised. If True
|
||||
then both the raw model response (a BaseMessage) and the parsed model
|
||||
response will be returned. If an error occurs during output parsing it
|
||||
will be caught and returned as well. The final output is always a dict
|
||||
with keys "raw", "parsed", and "parsing_error".
|
||||
|
||||
Returns:
|
||||
A Runnable that takes any ChatModel input and returns as output:
|
||||
|
||||
If include_raw is True then a dict with keys:
|
||||
raw: BaseMessage
|
||||
parsed: Optional[_DictOrPydantic]
|
||||
parsing_error: Optional[BaseException]
|
||||
|
||||
If include_raw is False then just _DictOrPydantic is returned,
|
||||
where _DictOrPydantic depends on the schema:
|
||||
|
||||
If schema is a Pydantic class then _DictOrPydantic is the Pydantic
|
||||
class.
|
||||
|
||||
If schema is a dict then _DictOrPydantic is a dict.
|
||||
|
||||
Example: Function-calling, Pydantic schema (method="function_calling", include_raw=False):
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_groq import ChatGroq
|
||||
from langchain_core.pydantic_v1 import BaseModel
|
||||
|
||||
class AnswerWithJustification(BaseModel):
|
||||
'''An answer to the user question along with justification for the answer.'''
|
||||
answer: str
|
||||
justification: str
|
||||
|
||||
llm = ChatGroq(temperature=0)
|
||||
structured_llm = llm.with_structured_output(AnswerWithJustification)
|
||||
|
||||
structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
|
||||
# -> AnswerWithJustification(
|
||||
# answer='A pound of bricks and a pound of feathers weigh the same.'
|
||||
# justification="Both a pound of bricks and a pound of feathers have been defined to have the same weight. The 'pound' is a unit of weight, so any two things that are described as weighing a pound will weigh the same."
|
||||
# )
|
||||
|
||||
Example: Function-calling, Pydantic schema (method="function_calling", include_raw=True):
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_groq import ChatGroq
|
||||
from langchain_core.pydantic_v1 import BaseModel
|
||||
|
||||
class AnswerWithJustification(BaseModel):
|
||||
'''An answer to the user question along with justification for the answer.'''
|
||||
answer: str
|
||||
justification: str
|
||||
|
||||
llm = ChatGroq(temperature=0)
|
||||
structured_llm = llm.with_structured_output(AnswerWithJustification, include_raw=True)
|
||||
|
||||
structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
|
||||
# -> {
|
||||
# 'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_01htjn3cspevxbqc1d7nkk8wab', 'function': {'arguments': '{"answer": "A pound of bricks and a pound of feathers weigh the same.", "justification": "Both a pound of bricks and a pound of feathers have been defined to have the same weight. The \'pound\' is a unit of weight, so any two things that are described as weighing a pound will weigh the same.", "unit": "pounds"}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}, id='run-456beee6-65f6-4e80-88af-a6065480822c-0'),
|
||||
# 'parsed': AnswerWithJustification(answer='A pound of bricks and a pound of feathers weigh the same.', justification="Both a pound of bricks and a pound of feathers have been defined to have the same weight. The 'pound' is a unit of weight, so any two things that are described as weighing a pound will weigh the same."),
|
||||
# 'parsing_error': None
|
||||
# }
|
||||
|
||||
Example: Function-calling, dict schema (method="function_calling", include_raw=False):
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_groq import ChatGroq
|
||||
from langchain_core.pydantic_v1 import BaseModel
|
||||
from langchain_core.utils.function_calling import convert_to_openai_tool
|
||||
|
||||
class AnswerWithJustification(BaseModel):
|
||||
'''An answer to the user question along with justification for the answer.'''
|
||||
answer: str
|
||||
justification: str
|
||||
|
||||
dict_schema = convert_to_openai_tool(AnswerWithJustification)
|
||||
llm = ChatGroq(temperature=0)
|
||||
structured_llm = llm.with_structured_output(dict_schema)
|
||||
|
||||
structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
|
||||
# -> {
|
||||
# 'answer': 'A pound of bricks and a pound of feathers weigh the same.',
|
||||
# 'justification': "Both a pound of bricks and a pound of feathers have been defined to have the same weight. The 'pound' is a unit of weight, so any two things that are described as weighing a pound will weigh the same.", 'unit': 'pounds'}
|
||||
# }
|
||||
|
||||
Example: JSON mode, Pydantic schema (method="json_mode", include_raw=True):
|
||||
.. code-block::
|
||||
|
||||
from langchain_groq import ChatGroq
|
||||
from langchain_core.pydantic_v1 import BaseModel
|
||||
|
||||
class AnswerWithJustification(BaseModel):
|
||||
answer: str
|
||||
justification: str
|
||||
|
||||
llm = ChatGroq(temperature=0)
|
||||
structured_llm = llm.with_structured_output(
|
||||
AnswerWithJustification,
|
||||
method="json_mode",
|
||||
include_raw=True
|
||||
)
|
||||
|
||||
structured_llm.invoke(
|
||||
"Answer the following question. "
|
||||
"Make sure to return a JSON blob with keys 'answer' and 'justification'.\n\n"
|
||||
"What's heavier a pound of bricks or a pound of feathers?"
|
||||
)
|
||||
# -> {
|
||||
# 'raw': AIMessage(content='{\n "answer": "A pound of bricks is the same weight as a pound of feathers.",\n "justification": "Both a pound of bricks and a pound of feathers weigh one pound. The material being weighed does not affect the weight, only the volume or number of items being weighed."\n}', id='run-e5453bc5-5025-4833-95f9-4967bf6d5c4f-0'),
|
||||
# 'parsed': AnswerWithJustification(answer='A pound of bricks is the same weight as a pound of feathers.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The material being weighed does not affect the weight, only the volume or number of items being weighed.'),
|
||||
# 'parsing_error': None
|
||||
# }
|
||||
|
||||
Example: JSON mode, no schema (schema=None, method="json_mode", include_raw=True):
|
||||
.. code-block::
|
||||
|
||||
from langchain_groq import ChatGroq
|
||||
|
||||
llm = ChatGroq(temperature=0)
|
||||
structured_llm = llm.with_structured_output(method="json_mode", include_raw=True)
|
||||
|
||||
structured_llm.invoke(
|
||||
"Answer the following question. "
|
||||
"Make sure to return a JSON blob with keys 'answer' and 'justification'.\n\n"
|
||||
"What's heavier a pound of bricks or a pound of feathers?"
|
||||
)
|
||||
# -> {
|
||||
# 'raw': AIMessage(content='{\n "answer": "A pound of bricks is the same weight as a pound of feathers.",\n "justification": "Both a pound of bricks and a pound of feathers weigh one pound. The material doesn\'t change the weight, only the volume or space that the material takes up."\n}', id='run-a4abbdb6-c20e-456f-bfff-da906a7e76b5-0'),
|
||||
# 'parsed': {
|
||||
# 'answer': 'A pound of bricks is the same weight as a pound of feathers.',
|
||||
# 'justification': "Both a pound of bricks and a pound of feathers weigh one pound. The material doesn't change the weight, only the volume or space that the material takes up."},
|
||||
# 'parsing_error': None
|
||||
# }
|
||||
|
||||
|
||||
""" # noqa: E501
|
||||
if kwargs:
|
||||
raise ValueError(f"Received unsupported arguments {kwargs}")
|
||||
is_pydantic_schema = _is_pydantic_class(schema)
|
||||
if method == "function_calling":
|
||||
if schema is None:
|
||||
raise ValueError(
|
||||
"schema must be specified when method is 'function_calling'. "
|
||||
"Received None."
|
||||
)
|
||||
llm = self.bind_tools([schema], tool_choice=True)
|
||||
if is_pydantic_schema:
|
||||
output_parser: OutputParserLike = PydanticToolsParser(
|
||||
tools=[schema], first_tool_only=True
|
||||
)
|
||||
else:
|
||||
key_name = convert_to_openai_tool(schema)["function"]["name"]
|
||||
output_parser = JsonOutputKeyToolsParser(
|
||||
key_name=key_name, first_tool_only=True
|
||||
)
|
||||
elif method == "json_mode":
|
||||
llm = self.bind(response_format={"type": "json_object"})
|
||||
output_parser = (
|
||||
PydanticOutputParser(pydantic_object=schema)
|
||||
if is_pydantic_schema
|
||||
else JsonOutputParser()
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unrecognized method argument. Expected one of 'function_calling' or "
|
||||
f"'json_format'. Received: '{method}'"
|
||||
)
|
||||
|
||||
if include_raw:
|
||||
parser_assign = RunnablePassthrough.assign(
|
||||
parsed=itemgetter("raw") | output_parser, parsing_error=lambda _: None
|
||||
)
|
||||
parser_none = RunnablePassthrough.assign(parsed=lambda _: None)
|
||||
parser_with_fallback = parser_assign.with_fallbacks(
|
||||
[parser_none], exception_key="parsing_error"
|
||||
)
|
||||
return RunnableMap(raw=llm) | parser_with_fallback
|
||||
else:
|
||||
return llm | output_parser
|
||||
|
||||
|
||||
def _is_pydantic_class(obj: Any) -> bool:
|
||||
return isinstance(obj, type) and issubclass(obj, BaseModel)
|
||||
|
||||
|
||||
class _FunctionCall(TypedDict):
|
||||
name: str
|
||||
|
||||
|
||||
#
|
||||
# Type conversion helpers
|
||||
@ -480,17 +830,18 @@ def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage:
|
||||
Returns:
|
||||
The LangChain message.
|
||||
"""
|
||||
id_ = _dict.get("id")
|
||||
role = _dict.get("role")
|
||||
if role == "user":
|
||||
return HumanMessage(content=_dict.get("content", ""))
|
||||
elif role == "assistant":
|
||||
content = _dict.get("content", "")
|
||||
content = _dict.get("content", "") or ""
|
||||
additional_kwargs: Dict = {}
|
||||
if function_call := _dict.get("function_call"):
|
||||
additional_kwargs["function_call"] = dict(function_call)
|
||||
if tool_calls := _dict.get("tool_calls"):
|
||||
additional_kwargs["tool_calls"] = tool_calls
|
||||
return AIMessage(content=content, additional_kwargs=additional_kwargs)
|
||||
return AIMessage(content=content, id=id_, additional_kwargs=additional_kwargs)
|
||||
elif role == "system":
|
||||
return SystemMessage(content=_dict.get("content", ""))
|
||||
elif role == "function":
|
||||
|
@ -89,7 +89,9 @@ markers = [
|
||||
]
|
||||
filterwarnings = [
|
||||
"error",
|
||||
'ignore::ResourceWarning:',
|
||||
'ignore:The function `with_structured_output` is in beta',
|
||||
# Maintain support for pydantic 1.X
|
||||
'default:The `dict` method is deprecated; use `model_dump` instead.*:DeprecationWarning',
|
||||
'default:The `dict` method is deprecated; use `model_dump` instead:DeprecationWarning',
|
||||
]
|
||||
asyncio_mode = "auto"
|
||||
|
@ -1,15 +1,18 @@
|
||||
"""Test ChatGroq chat model."""
|
||||
|
||||
import json
|
||||
from typing import Any
|
||||
|
||||
import pytest
|
||||
from langchain_core.messages import (
|
||||
AIMessage,
|
||||
BaseMessage,
|
||||
BaseMessageChunk,
|
||||
HumanMessage,
|
||||
SystemMessage,
|
||||
)
|
||||
from langchain_core.outputs import ChatGeneration, LLMResult
|
||||
from langchain_core.pydantic_v1 import BaseModel, Field
|
||||
|
||||
from langchain_groq import ChatGroq
|
||||
from tests.unit_tests.fake.callbacks import (
|
||||
@ -45,9 +48,9 @@ def test_invoke() -> None:
|
||||
@pytest.mark.scheduled
|
||||
async def test_ainvoke() -> None:
|
||||
"""Test ainvoke tokens from ChatGroq."""
|
||||
llm = ChatGroq(max_tokens=10)
|
||||
chat = ChatGroq(max_tokens=10)
|
||||
|
||||
result = await llm.ainvoke("Welcome to the Groqetship!", config={"tags": ["foo"]})
|
||||
result = await chat.ainvoke("Welcome to the Groqetship!", config={"tags": ["foo"]})
|
||||
assert isinstance(result, BaseMessage)
|
||||
assert isinstance(result.content, str)
|
||||
|
||||
@ -55,9 +58,9 @@ async def test_ainvoke() -> None:
|
||||
@pytest.mark.scheduled
|
||||
def test_batch() -> None:
|
||||
"""Test batch tokens from ChatGroq."""
|
||||
llm = ChatGroq(max_tokens=10)
|
||||
chat = ChatGroq(max_tokens=10)
|
||||
|
||||
result = llm.batch(["Hello!", "Welcome to the Groqetship!"])
|
||||
result = chat.batch(["Hello!", "Welcome to the Groqetship!"])
|
||||
for token in result:
|
||||
assert isinstance(token, BaseMessage)
|
||||
assert isinstance(token.content, str)
|
||||
@ -66,9 +69,9 @@ def test_batch() -> None:
|
||||
@pytest.mark.scheduled
|
||||
async def test_abatch() -> None:
|
||||
"""Test abatch tokens from ChatGroq."""
|
||||
llm = ChatGroq(max_tokens=10)
|
||||
chat = ChatGroq(max_tokens=10)
|
||||
|
||||
result = await llm.abatch(["Hello!", "Welcome to the Groqetship!"])
|
||||
result = await chat.abatch(["Hello!", "Welcome to the Groqetship!"])
|
||||
for token in result:
|
||||
assert isinstance(token, BaseMessage)
|
||||
assert isinstance(token.content, str)
|
||||
@ -77,9 +80,9 @@ async def test_abatch() -> None:
|
||||
@pytest.mark.scheduled
|
||||
async def test_stream() -> None:
|
||||
"""Test streaming tokens from Groq."""
|
||||
llm = ChatGroq(max_tokens=10)
|
||||
chat = ChatGroq(max_tokens=10)
|
||||
|
||||
for token in llm.stream("Welcome to the Groqetship!"):
|
||||
for token in chat.stream("Welcome to the Groqetship!"):
|
||||
assert isinstance(token, BaseMessageChunk)
|
||||
assert isinstance(token.content, str)
|
||||
|
||||
@ -87,9 +90,9 @@ async def test_stream() -> None:
|
||||
@pytest.mark.scheduled
|
||||
async def test_astream() -> None:
|
||||
"""Test streaming tokens from Groq."""
|
||||
llm = ChatGroq(max_tokens=10)
|
||||
chat = ChatGroq(max_tokens=10)
|
||||
|
||||
async for token in llm.astream("Welcome to the Groqetship!"):
|
||||
async for token in chat.astream("Welcome to the Groqetship!"):
|
||||
assert isinstance(token, BaseMessageChunk)
|
||||
assert isinstance(token.content, str)
|
||||
|
||||
@ -202,11 +205,11 @@ def test_streaming_generation_info() -> None:
|
||||
temperature=0,
|
||||
callbacks=[callback],
|
||||
)
|
||||
list(chat.stream("Respond with the single word Hello"))
|
||||
list(chat.stream("Respond with the single word Hello", stop=["o"]))
|
||||
generation = callback.saved_things["generation"]
|
||||
# `Hello!` is two tokens, assert that that is what is returned
|
||||
assert isinstance(generation, LLMResult)
|
||||
assert generation.generations[0][0].text == "Hello"
|
||||
assert generation.generations[0][0].text == "Hell"
|
||||
|
||||
|
||||
def test_system_message() -> None:
|
||||
@ -219,6 +222,75 @@ def test_system_message() -> None:
|
||||
assert isinstance(response.content, str)
|
||||
|
||||
|
||||
@pytest.mark.scheduled
|
||||
def test_tool_choice() -> None:
|
||||
"""Test that tool choice is respected."""
|
||||
llm = ChatGroq()
|
||||
|
||||
class MyTool(BaseModel):
|
||||
name: str
|
||||
age: int
|
||||
|
||||
with_tool = llm.bind_tools([MyTool], tool_choice="MyTool")
|
||||
|
||||
resp = with_tool.invoke("Who was the 27 year old named Erick?")
|
||||
assert isinstance(resp, AIMessage)
|
||||
assert resp.content == "" # should just be tool call
|
||||
tool_calls = resp.additional_kwargs["tool_calls"]
|
||||
assert len(tool_calls) == 1
|
||||
tool_call = tool_calls[0]
|
||||
assert tool_call["function"]["name"] == "MyTool"
|
||||
assert json.loads(tool_call["function"]["arguments"]) == {
|
||||
"age": 27,
|
||||
"name": "Erick",
|
||||
}
|
||||
assert tool_call["type"] == "function"
|
||||
|
||||
|
||||
@pytest.mark.scheduled
|
||||
def test_tool_choice_bool() -> None:
|
||||
"""Test that tool choice is respected just passing in True."""
|
||||
llm = ChatGroq()
|
||||
|
||||
class MyTool(BaseModel):
|
||||
name: str
|
||||
age: int
|
||||
|
||||
with_tool = llm.bind_tools([MyTool], tool_choice=True)
|
||||
|
||||
resp = with_tool.invoke("Who was the 27 year old named Erick?")
|
||||
assert isinstance(resp, AIMessage)
|
||||
assert resp.content == "" # should just be tool call
|
||||
tool_calls = resp.additional_kwargs["tool_calls"]
|
||||
assert len(tool_calls) == 1
|
||||
tool_call = tool_calls[0]
|
||||
assert tool_call["function"]["name"] == "MyTool"
|
||||
assert json.loads(tool_call["function"]["arguments"]) == {
|
||||
"age": 27,
|
||||
"name": "Erick",
|
||||
}
|
||||
assert tool_call["type"] == "function"
|
||||
|
||||
|
||||
@pytest.mark.scheduled
|
||||
def test_json_mode_structured_output() -> None:
|
||||
"""Test with_structured_output with json"""
|
||||
|
||||
class Joke(BaseModel):
|
||||
"""Joke to tell user."""
|
||||
|
||||
setup: str = Field(description="question to set up a joke")
|
||||
punchline: str = Field(description="answer to resolve the joke")
|
||||
|
||||
chat = ChatGroq().with_structured_output(Joke, method="json_mode")
|
||||
result = chat.invoke(
|
||||
"Tell me a joke about cats, respond in JSON with `setup` and `punchline` keys"
|
||||
)
|
||||
assert type(result) == Joke
|
||||
assert len(result.setup) != 0
|
||||
assert len(result.punchline) != 0
|
||||
|
||||
|
||||
# Groq does not currently support N > 1
|
||||
# @pytest.mark.scheduled
|
||||
# def test_chat_multiple_completions() -> None:
|
||||
|
@ -16,7 +16,8 @@ from langchain_core.messages import (
|
||||
|
||||
from langchain_groq.chat_models import ChatGroq, _convert_dict_to_message
|
||||
|
||||
os.environ["GROQ_API_KEY"] = "fake-key"
|
||||
if "GROQ_API_KEY" not in os.environ:
|
||||
os.environ["GROQ_API_KEY"] = "fake-key"
|
||||
|
||||
|
||||
def test_groq_model_param() -> None:
|
||||
|
Loading…
Reference in New Issue
Block a user