mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
Reduce generation of temporary objects (#7950)
Just a tiny change to use `list.append(...)` and `list.extend(...)` instead of `list += [...]` so that no unnecessary temporary lists are created. Since its a tiny miscellaneous thing I guess @baskaryan is the maintainer to tag? --------- Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
This commit is contained in:
parent
d1b95db874
commit
873a80e496
@ -338,10 +338,10 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
|
|||||||
disallowed_special=self.disallowed_special,
|
disallowed_special=self.disallowed_special,
|
||||||
)
|
)
|
||||||
for j in range(0, len(token), self.embedding_ctx_length):
|
for j in range(0, len(token), self.embedding_ctx_length):
|
||||||
tokens += [token[j : j + self.embedding_ctx_length]]
|
tokens.append(token[j : j + self.embedding_ctx_length])
|
||||||
indices += [i]
|
indices.append(i)
|
||||||
|
|
||||||
batched_embeddings = []
|
batched_embeddings: List[List[float]] = []
|
||||||
_chunk_size = chunk_size or self.chunk_size
|
_chunk_size = chunk_size or self.chunk_size
|
||||||
|
|
||||||
if self.show_progress_bar:
|
if self.show_progress_bar:
|
||||||
@ -360,7 +360,7 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
|
|||||||
input=tokens[i : i + _chunk_size],
|
input=tokens[i : i + _chunk_size],
|
||||||
**self._invocation_params,
|
**self._invocation_params,
|
||||||
)
|
)
|
||||||
batched_embeddings += [r["embedding"] for r in response["data"]]
|
batched_embeddings.extend(r["embedding"] for r in response["data"])
|
||||||
|
|
||||||
results: List[List[List[float]]] = [[] for _ in range(len(texts))]
|
results: List[List[List[float]]] = [[] for _ in range(len(texts))]
|
||||||
num_tokens_in_batch: List[List[int]] = [[] for _ in range(len(texts))]
|
num_tokens_in_batch: List[List[int]] = [[] for _ in range(len(texts))]
|
||||||
@ -419,10 +419,10 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
|
|||||||
disallowed_special=self.disallowed_special,
|
disallowed_special=self.disallowed_special,
|
||||||
)
|
)
|
||||||
for j in range(0, len(token), self.embedding_ctx_length):
|
for j in range(0, len(token), self.embedding_ctx_length):
|
||||||
tokens += [token[j : j + self.embedding_ctx_length]]
|
tokens.append(token[j : j + self.embedding_ctx_length])
|
||||||
indices += [i]
|
indices.append(i)
|
||||||
|
|
||||||
batched_embeddings = []
|
batched_embeddings: List[List[float]] = []
|
||||||
_chunk_size = chunk_size or self.chunk_size
|
_chunk_size = chunk_size or self.chunk_size
|
||||||
for i in range(0, len(tokens), _chunk_size):
|
for i in range(0, len(tokens), _chunk_size):
|
||||||
response = await async_embed_with_retry(
|
response = await async_embed_with_retry(
|
||||||
@ -430,7 +430,7 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
|
|||||||
input=tokens[i : i + _chunk_size],
|
input=tokens[i : i + _chunk_size],
|
||||||
**self._invocation_params,
|
**self._invocation_params,
|
||||||
)
|
)
|
||||||
batched_embeddings += [r["embedding"] for r in response["data"]]
|
batched_embeddings.extend(r["embedding"] for r in response["data"])
|
||||||
|
|
||||||
results: List[List[List[float]]] = [[] for _ in range(len(texts))]
|
results: List[List[List[float]]] = [[] for _ in range(len(texts))]
|
||||||
num_tokens_in_batch: List[List[int]] = [[] for _ in range(len(texts))]
|
num_tokens_in_batch: List[List[int]] = [[] for _ in range(len(texts))]
|
||||||
|
Loading…
Reference in New Issue
Block a user