mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
togetherai[patch]: Update API Reference for together AI embeddings model (#25295)
Issue: https://github.com/langchain-ai/langchain/issues/24856
This commit is contained in:
parent
1af8456a2c
commit
8626abf8b5
@ -35,17 +35,74 @@ logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class TogetherEmbeddings(BaseModel, Embeddings):
|
||||
"""TogetherEmbeddings embedding model.
|
||||
"""Together embedding model integration.
|
||||
|
||||
To use, set the environment variable `TOGETHER_API_KEY` with your API key or
|
||||
pass it as a named parameter to the constructor.
|
||||
Setup:
|
||||
Install ``langchain_together`` and set environment variable
|
||||
``TOGETHER_API_KEY``.
|
||||
|
||||
Example:
|
||||
.. code-block:: bash
|
||||
|
||||
pip install -U langchain_together
|
||||
export TOGETHER_API_KEY="your-api-key"
|
||||
|
||||
Key init args — completion params:
|
||||
model: str
|
||||
Name of Together model to use.
|
||||
|
||||
Key init args — client params:
|
||||
api_key: Optional[SecretStr]
|
||||
|
||||
See full list of supported init args and their descriptions in the params section.
|
||||
|
||||
Instantiate:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_together import TogetherEmbeddings
|
||||
from __module_name__ import TogetherEmbeddings
|
||||
|
||||
model = TogetherEmbeddings()
|
||||
embed = TogetherEmbeddings(
|
||||
model="togethercomputer/m2-bert-80M-8k-retrieval",
|
||||
# api_key="...",
|
||||
# other params...
|
||||
)
|
||||
|
||||
Embed single text:
|
||||
.. code-block:: python
|
||||
|
||||
input_text = "The meaning of life is 42"
|
||||
vector = embed.embed_query(input_text)
|
||||
print(vector[:3])
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
[-0.024603435769677162, -0.007543657906353474, 0.0039630369283258915]
|
||||
|
||||
Embed multiple texts:
|
||||
.. code-block:: python
|
||||
|
||||
input_texts = ["Document 1...", "Document 2..."]
|
||||
vectors = embed.embed_documents(input_texts)
|
||||
print(len(vectors))
|
||||
# The first 3 coordinates for the first vector
|
||||
print(vectors[0][:3])
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
2
|
||||
[-0.024603435769677162, -0.007543657906353474, 0.0039630369283258915]
|
||||
|
||||
Async:
|
||||
.. code-block:: python
|
||||
|
||||
vector = await embed.aembed_query(input_text)
|
||||
print(vector[:3])
|
||||
|
||||
# multiple:
|
||||
# await embed.aembed_documents(input_texts)
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
[-0.009100092574954033, 0.005071679595857859, -0.0029193938244134188]
|
||||
"""
|
||||
|
||||
client: Any = Field(default=None, exclude=True) #: :meta private:
|
||||
|
Loading…
Reference in New Issue
Block a user