Added support for examples for VertexAI chat models. (#7636)

#5278

Co-authored-by: Leonid Kuligin <kuligin@google.com>
This commit is contained in:
Leonid Kuligin 2023-07-14 08:03:04 +02:00 committed by GitHub
parent 45bb414be2
commit 85e1c9b348
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 90 additions and 10 deletions

View File

@ -23,7 +23,7 @@ from langchain.schema.messages import (
from langchain.utilities.vertexai import raise_vertex_import_error from langchain.utilities.vertexai import raise_vertex_import_error
if TYPE_CHECKING: if TYPE_CHECKING:
from vertexai.language_models import ChatMessage from vertexai.language_models import ChatMessage, InputOutputTextPair
@dataclass @dataclass
@ -65,6 +65,36 @@ def _parse_chat_history(history: List[BaseMessage]) -> _ChatHistory:
return chat_history return chat_history
def _parse_examples(examples: List[BaseMessage]) -> List["InputOutputTextPair"]:
from vertexai.language_models import InputOutputTextPair
if len(examples) % 2 != 0:
raise ValueError(
f"Expect examples to have an even amount of messages, got {len(examples)}."
)
example_pairs = []
input_text = None
for i, example in enumerate(examples):
if i % 2 == 0:
if not isinstance(example, HumanMessage):
raise ValueError(
f"Expected the first message in a part to be from human, got "
f"{type(example)} for the {i}th message."
)
input_text = example.content
if i % 2 == 1:
if not isinstance(example, AIMessage):
raise ValueError(
f"Expected the second message in a part to be from AI, got "
f"{type(example)} for the {i}th message."
)
pair = InputOutputTextPair(
input_text=input_text, output_text=example.content
)
example_pairs.append(pair)
return example_pairs
class ChatVertexAI(_VertexAICommon, BaseChatModel): class ChatVertexAI(_VertexAICommon, BaseChatModel):
"""Wrapper around Vertex AI large language models.""" """Wrapper around Vertex AI large language models."""
@ -120,13 +150,16 @@ class ChatVertexAI(_VertexAICommon, BaseChatModel):
history = _parse_chat_history(messages[:-1]) history = _parse_chat_history(messages[:-1])
context = history.context if history.context else None context = history.context if history.context else None
params = {**self._default_params, **kwargs} params = {**self._default_params, **kwargs}
examples = kwargs.get("examples", None)
if examples:
params["examples"] = _parse_examples(examples)
if not self.is_codey_model: if not self.is_codey_model:
chat = self.client.start_chat( chat = self.client.start_chat(
context=context, message_history=history.history, **params context=context, message_history=history.history, **params
) )
else: else:
chat = self.client.start_chat(**params) chat = self.client.start_chat(**params)
response = chat.send_message(question.content, **params) response = chat.send_message(question.content)
text = self._enforce_stop_words(response.text, stop) text = self._enforce_stop_words(response.text, stop)
return ChatResult(generations=[ChatGeneration(message=AIMessage(content=text))]) return ChatResult(generations=[ChatGeneration(message=AIMessage(content=text))])

View File

@ -7,12 +7,12 @@ pip install google-cloud-aiplatform>=1.25.0
Your end-user credentials would be used to make the calls (make sure you've run Your end-user credentials would be used to make the calls (make sure you've run
`gcloud auth login` first). `gcloud auth login` first).
""" """
from unittest.mock import Mock, patch from unittest.mock import MagicMock, Mock, patch
import pytest import pytest
from langchain.chat_models import ChatVertexAI from langchain.chat_models import ChatVertexAI
from langchain.chat_models.vertexai import _parse_chat_history from langchain.chat_models.vertexai import _parse_chat_history, _parse_examples
from langchain.schema.messages import AIMessage, HumanMessage, SystemMessage from langchain.schema.messages import AIMessage, HumanMessage, SystemMessage
@ -42,6 +42,20 @@ def test_vertexai_single_call_with_context() -> None:
assert isinstance(response.content, str) assert isinstance(response.content, str)
def test_vertexai_single_call_with_examples() -> None:
model = ChatVertexAI()
raw_context = "My name is Ned. You are my personal assistant."
question = "2+2"
text_question, text_answer = "4+4", "8"
inp = HumanMessage(content=text_question)
output = AIMessage(content=text_answer)
context = SystemMessage(content=raw_context)
message = HumanMessage(content=question)
response = model([context, message], examples=[inp, output])
assert isinstance(response, AIMessage)
assert isinstance(response.content, str)
def test_parse_chat_history_correct() -> None: def test_parse_chat_history_correct() -> None:
from vertexai.language_models import ChatMessage from vertexai.language_models import ChatMessage
@ -92,17 +106,50 @@ def test_vertexai_args_passed() -> None:
# Mock the library to ensure the args are passed correctly # Mock the library to ensure the args are passed correctly
with patch( with patch(
"vertexai.language_models._language_models.ChatSession.send_message" "vertexai.language_models._language_models.ChatModel.start_chat"
) as send_message: ) as start_chat:
mock_response = Mock(text=response_text) mock_response = Mock(text=response_text)
send_message.return_value = mock_response mock_chat = MagicMock()
start_chat.return_value = mock_chat
mock_send_message = MagicMock(return_value=mock_response)
mock_chat.send_message = mock_send_message
model = ChatVertexAI(**prompt_params) model = ChatVertexAI(**prompt_params)
message = HumanMessage(content=user_prompt) message = HumanMessage(content=user_prompt)
response = model([message]) response = model([message])
assert response.content == response_text assert response.content == response_text
send_message.assert_called_once_with( mock_send_message.assert_called_once_with(user_prompt)
user_prompt, start_chat.assert_called_once_with(
**prompt_params, context=None, message_history=[], **prompt_params
) )
def test_parse_examples_correct() -> None:
from vertexai.language_models import InputOutputTextPair
text_question = (
"Hello, could you recommend a good movie for me to watch this evening, please?"
)
question = HumanMessage(content=text_question)
text_answer = (
"Sure, You might enjoy The Lord of the Rings: The Fellowship of the Ring "
"(2001): This is the first movie in the Lord of the Rings trilogy."
)
answer = AIMessage(content=text_answer)
examples = _parse_examples([question, answer, question, answer])
assert len(examples) == 2
assert examples == [
InputOutputTextPair(input_text=text_question, output_text=text_answer),
InputOutputTextPair(input_text=text_question, output_text=text_answer),
]
def test_parse_exmaples_failes_wrong_sequence() -> None:
with pytest.raises(ValueError) as exc_info:
_ = _parse_examples([AIMessage(content="a")])
print(str(exc_info.value))
assert (
str(exc_info.value)
== "Expect examples to have an even amount of messages, got 1."
)