mirror of
https://github.com/hwchase17/langchain
synced 2024-11-04 06:00:26 +00:00
Merge branch 'master' of github.com:hwchase17/langchain
This commit is contained in:
commit
82df923f37
@ -339,11 +339,38 @@ class ElasticVectorSearch(VectorStore, ABC):
|
||||
self.client.delete(index=self.index_name, id=id)
|
||||
|
||||
|
||||
class ElasticKnnSearch(ElasticVectorSearch):
|
||||
class ElasticKnnSearch(VectorStore, ABC):
|
||||
"""
|
||||
A class for performing k-Nearest Neighbors (k-NN) search on an Elasticsearch index.
|
||||
The class is designed for a text search scenario where documents are text strings
|
||||
and their embeddings are vector representations of those strings.
|
||||
ElasticKnnSearch is a class for performing k-nearest neighbor
|
||||
(k-NN) searches on text data using Elasticsearch.
|
||||
|
||||
This class is used to create an Elasticsearch index of text data that
|
||||
can be searched using k-NN search. The text data is transformed into
|
||||
vector embeddings using a provided embedding model, and these embeddings
|
||||
are stored in the Elasticsearch index.
|
||||
|
||||
Attributes:
|
||||
index_name (str): The name of the Elasticsearch index.
|
||||
embedding (Embeddings): The embedding model to use for transforming text data
|
||||
into vector embeddings.
|
||||
es_connection (Elasticsearch, optional): An existing Elasticsearch connection.
|
||||
es_cloud_id (str, optional): The Cloud ID of your Elasticsearch Service
|
||||
deployment.
|
||||
es_user (str, optional): The username for your Elasticsearch Service deployment.
|
||||
es_password (str, optional): The password for your Elasticsearch Service
|
||||
deployment.
|
||||
vector_query_field (str, optional): The name of the field in the Elasticsearch
|
||||
index that contains the vector embeddings.
|
||||
query_field (str, optional): The name of the field in the Elasticsearch index
|
||||
that contains the original text data.
|
||||
|
||||
Usage:
|
||||
>>> from embeddings import Embeddings
|
||||
>>> embedding = Embeddings.load('glove')
|
||||
>>> es_search = ElasticKnnSearch('my_index', embedding)
|
||||
>>> es_search.add_texts(['Hello world!', 'Another text'])
|
||||
>>> results = es_search.knn_search('Hello')
|
||||
[(Document(page_content='Hello world!', metadata={}), 0.9)]
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
@ -357,22 +384,6 @@ class ElasticKnnSearch(ElasticVectorSearch):
|
||||
vector_query_field: Optional[str] = "vector",
|
||||
query_field: Optional[str] = "text",
|
||||
):
|
||||
"""
|
||||
Initializes an instance of the ElasticKnnSearch class and sets up the
|
||||
Elasticsearch client.
|
||||
|
||||
Args:
|
||||
index_name: The name of the Elasticsearch index.
|
||||
embedding: An instance of the Embeddings class, used to generate vector
|
||||
representations of text strings.
|
||||
es_connection: An existing Elasticsearch connection.
|
||||
es_cloud_id: The Cloud ID of the Elasticsearch instance. Required if
|
||||
creating a new connection.
|
||||
es_user: The username for the Elasticsearch instance. Required if
|
||||
creating a new connection.
|
||||
es_password: The password for the Elasticsearch instance. Required if
|
||||
creating a new connection.
|
||||
"""
|
||||
try:
|
||||
import elasticsearch
|
||||
except ImportError:
|
||||
@ -402,48 +413,10 @@ class ElasticKnnSearch(ElasticVectorSearch):
|
||||
or valid credentials for creating a new connection."""
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def from_texts(
|
||||
cls,
|
||||
texts: List[str],
|
||||
embedding: Embeddings,
|
||||
metadatas: Optional[List[dict]] = None,
|
||||
ids: Optional[List[str]] = None,
|
||||
index_name: Optional[str] = None,
|
||||
refresh_indices: bool = True,
|
||||
es_connection: Optional["Elasticsearch"] = None,
|
||||
es_cloud_id: Optional[str] = None,
|
||||
es_user: Optional[str] = None,
|
||||
es_password: Optional[str] = None,
|
||||
**kwargs: Any,
|
||||
) -> ElasticKnnSearch:
|
||||
"""Construct ElasticKnnSearch wrapper from raw documents.
|
||||
|
||||
This is a user-friendly interface that:
|
||||
1. Embeds documents.
|
||||
2. Creates a new index for the embeddings in the Elasticsearch instance.
|
||||
3. Adds the documents to the newly created Elasticsearch index.
|
||||
|
||||
This is intended to be a quick way to get started.
|
||||
"""
|
||||
index_name = index_name or uuid.uuid4().hex
|
||||
vectorsearch = cls(
|
||||
index_name,
|
||||
embedding,
|
||||
es_connection=es_connection,
|
||||
es_cloud_id=es_cloud_id,
|
||||
es_user=es_user,
|
||||
es_password=es_password,
|
||||
**kwargs,
|
||||
)
|
||||
vectorsearch.add_texts(
|
||||
texts, metadatas=metadatas, refresh_indices=refresh_indices, ids=ids
|
||||
)
|
||||
return vectorsearch
|
||||
|
||||
@staticmethod
|
||||
def _default_knn_mapping(dims: int) -> Dict:
|
||||
"""Generates a default index mapping for kNN search."""
|
||||
def _default_knn_mapping(
|
||||
dims: int, similarity: Optional[str] = "dot_product"
|
||||
) -> Dict:
|
||||
return {
|
||||
"properties": {
|
||||
"text": {"type": "text"},
|
||||
@ -451,7 +424,7 @@ class ElasticKnnSearch(ElasticVectorSearch):
|
||||
"type": "dense_vector",
|
||||
"dims": dims,
|
||||
"index": True,
|
||||
"similarity": "dot_product",
|
||||
"similarity": similarity,
|
||||
},
|
||||
}
|
||||
}
|
||||
@ -490,6 +463,21 @@ class ElasticKnnSearch(ElasticVectorSearch):
|
||||
|
||||
return knn
|
||||
|
||||
def similarity_search(
|
||||
self, query: str, k: int = 4, filter: Optional[dict] = None, **kwargs: Any
|
||||
) -> List[Document]:
|
||||
"""
|
||||
Pass through to `knn_search`
|
||||
"""
|
||||
results = self.knn_search(query=query, k=k, **kwargs)
|
||||
return [doc for doc, score in results]
|
||||
|
||||
def similarity_search_with_score(
|
||||
self, query: str, k: int = 10, **kwargs: Any
|
||||
) -> List[Tuple[Document, float]]:
|
||||
"""Pass through to `knn_search including score`"""
|
||||
return self.knn_search(query=query, k=k, **kwargs)
|
||||
|
||||
def knn_search(
|
||||
self,
|
||||
query: Optional[str] = None,
|
||||
@ -501,51 +489,62 @@ class ElasticKnnSearch(ElasticVectorSearch):
|
||||
fields: Optional[
|
||||
Union[List[Mapping[str, Any]], Tuple[Mapping[str, Any], ...], None]
|
||||
] = None,
|
||||
) -> Dict:
|
||||
page_content: Optional[str] = "text",
|
||||
) -> List[Tuple[Document, float]]:
|
||||
"""
|
||||
Performs a k-nearest neighbor (k-NN) search on the Elasticsearch index.
|
||||
|
||||
The search can be conducted using either a raw query vector or a model ID.
|
||||
The method first generates
|
||||
the body of the search query, which can be interpreted by Elasticsearch.
|
||||
It then performs the k-NN
|
||||
search on the Elasticsearch index and returns the results.
|
||||
Perform a k-NN search on the Elasticsearch index.
|
||||
|
||||
Args:
|
||||
query: The query or queries to be used for the search. Required if
|
||||
`query_vector` is not provided.
|
||||
k: The number of nearest neighbors to return. Defaults to 10.
|
||||
query_vector: The query vector to be used for the search. Required if
|
||||
`query` is not provided.
|
||||
model_id: The ID of the model to use for generating the query vector, if
|
||||
`query` is provided.
|
||||
size: The number of search hits to return. Defaults to 10.
|
||||
source: Whether to include the source of each hit in the results.
|
||||
fields: The fields to include in the source of each hit. If None, all
|
||||
fields are included.
|
||||
vector_query_field: Field name to use in knn search if not default 'vector'
|
||||
query (str, optional): The query text to search for.
|
||||
k (int, optional): The number of nearest neighbors to return.
|
||||
query_vector (List[float], optional): The query vector to search for.
|
||||
model_id (str, optional): The ID of the model to use for transforming the
|
||||
query text into a vector.
|
||||
size (int, optional): The number of search results to return.
|
||||
source (bool, optional): Whether to return the source of the search results.
|
||||
fields (List[Mapping[str, Any]], optional): The fields to return in the
|
||||
search results.
|
||||
page_content (str, optional): The name of the field that contains the page
|
||||
content.
|
||||
|
||||
Returns:
|
||||
The search results.
|
||||
|
||||
Raises:
|
||||
ValueError: If neither `query_vector` nor `model_id` is provided, or if
|
||||
both are provided.
|
||||
A list of tuples, where each tuple contains a Document object and a score.
|
||||
"""
|
||||
|
||||
# if not source and (fields == None or page_content not in fields):
|
||||
if not source and (
|
||||
fields is None or not any(page_content in field for field in fields)
|
||||
):
|
||||
raise ValueError("If source=False `page_content` field must be in `fields`")
|
||||
|
||||
knn_query_body = self._default_knn_query(
|
||||
query_vector=query_vector, query=query, model_id=model_id, k=k
|
||||
)
|
||||
|
||||
# Perform the kNN search on the Elasticsearch index and return the results.
|
||||
res = self.client.search(
|
||||
response = self.client.search(
|
||||
index=self.index_name,
|
||||
knn=knn_query_body,
|
||||
size=size,
|
||||
source=source,
|
||||
fields=fields,
|
||||
)
|
||||
return dict(res)
|
||||
|
||||
hits = [hit for hit in response["hits"]["hits"]]
|
||||
docs_and_scores = [
|
||||
(
|
||||
Document(
|
||||
page_content=hit["_source"][page_content]
|
||||
if source
|
||||
else hit["fields"][page_content][0],
|
||||
metadata=hit["fields"] if fields else {},
|
||||
),
|
||||
hit["_score"],
|
||||
)
|
||||
for hit in hits
|
||||
]
|
||||
|
||||
return docs_and_scores
|
||||
|
||||
def knn_hybrid_search(
|
||||
self,
|
||||
@ -560,43 +559,38 @@ class ElasticKnnSearch(ElasticVectorSearch):
|
||||
fields: Optional[
|
||||
Union[List[Mapping[str, Any]], Tuple[Mapping[str, Any], ...], None]
|
||||
] = None,
|
||||
) -> Dict[Any, Any]:
|
||||
"""Performs a hybrid k-nearest neighbor (k-NN) and text-based search on the
|
||||
Elasticsearch index.
|
||||
|
||||
The search can be conducted using either a raw query vector or a model ID.
|
||||
The method first generates
|
||||
the body of the k-NN search query and the text-based query, which can be
|
||||
interpreted by Elasticsearch.
|
||||
It then performs the hybrid search on the Elasticsearch index and returns the
|
||||
results.
|
||||
page_content: Optional[str] = "text",
|
||||
) -> List[Tuple[Document, float]]:
|
||||
"""
|
||||
Perform a hybrid k-NN and text search on the Elasticsearch index.
|
||||
|
||||
Args:
|
||||
query: The query or queries to be used for the search. Required if
|
||||
`query_vector` is not provided.
|
||||
k: The number of nearest neighbors to return. Defaults to 10.
|
||||
query_vector: The query vector to be used for the search. Required if
|
||||
`query` is not provided.
|
||||
model_id: The ID of the model to use for generating the query vector, if
|
||||
`query` is provided.
|
||||
size: The number of search hits to return. Defaults to 10.
|
||||
source: Whether to include the source of each hit in the results.
|
||||
knn_boost: The boost factor for the k-NN part of the search.
|
||||
query_boost: The boost factor for the text-based part of the search.
|
||||
fields
|
||||
The fields to include in the source of each hit. If None, all fields are
|
||||
included. Defaults to None.
|
||||
vector_query_field: Field name to use in knn search if not default 'vector'
|
||||
query_field: Field name to use in search if not default 'text'
|
||||
query (str, optional): The query text to search for.
|
||||
k (int, optional): The number of nearest neighbors to return.
|
||||
query_vector (List[float], optional): The query vector to search for.
|
||||
model_id (str, optional): The ID of the model to use for transforming the
|
||||
query text into a vector.
|
||||
size (int, optional): The number of search results to return.
|
||||
source (bool, optional): Whether to return the source of the search results.
|
||||
knn_boost (float, optional): The boost value to apply to the k-NN search
|
||||
results.
|
||||
query_boost (float, optional): The boost value to apply to the text search
|
||||
results.
|
||||
fields (List[Mapping[str, Any]], optional): The fields to return in the
|
||||
search results.
|
||||
page_content (str, optional): The name of the field that contains the page
|
||||
content.
|
||||
|
||||
Returns:
|
||||
The search results.
|
||||
|
||||
Raises:
|
||||
ValueError: If neither `query_vector` nor `model_id` is provided, or if
|
||||
both are provided.
|
||||
A list of tuples, where each tuple contains a Document object and a score.
|
||||
"""
|
||||
|
||||
# if not source and (fields == None or page_content not in fields):
|
||||
if not source and (
|
||||
fields is None or not any(page_content in field for field in fields)
|
||||
):
|
||||
raise ValueError("If source=False `page_content` field must be in `fields`")
|
||||
|
||||
knn_query_body = self._default_knn_query(
|
||||
query_vector=query_vector, query=query, model_id=model_id, k=k
|
||||
)
|
||||
@ -610,7 +604,7 @@ class ElasticKnnSearch(ElasticVectorSearch):
|
||||
}
|
||||
|
||||
# Perform the hybrid search on the Elasticsearch index and return the results.
|
||||
res = self.client.search(
|
||||
response = self.client.search(
|
||||
index=self.index_name,
|
||||
query=match_query_body,
|
||||
knn=knn_query_body,
|
||||
@ -618,4 +612,157 @@ class ElasticKnnSearch(ElasticVectorSearch):
|
||||
size=size,
|
||||
source=source,
|
||||
)
|
||||
return dict(res)
|
||||
|
||||
hits = [hit for hit in response["hits"]["hits"]]
|
||||
docs_and_scores = [
|
||||
(
|
||||
Document(
|
||||
page_content=hit["_source"][page_content]
|
||||
if source
|
||||
else hit["fields"][page_content][0],
|
||||
metadata=hit["fields"] if fields else {},
|
||||
),
|
||||
hit["_score"],
|
||||
)
|
||||
for hit in hits
|
||||
]
|
||||
|
||||
return docs_and_scores
|
||||
|
||||
def create_knn_index(self, mapping: Dict) -> None:
|
||||
"""
|
||||
Create a new k-NN index in Elasticsearch.
|
||||
|
||||
Args:
|
||||
mapping (Dict): The mapping to use for the new index.
|
||||
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
|
||||
self.client.indices.create(index=self.index_name, mappings=mapping)
|
||||
|
||||
def add_texts(
|
||||
self,
|
||||
texts: Iterable[str],
|
||||
metadatas: Optional[List[Dict[Any, Any]]] = None,
|
||||
model_id: Optional[str] = None,
|
||||
refresh_indices: bool = False,
|
||||
**kwargs: Any,
|
||||
) -> List[str]:
|
||||
"""
|
||||
Add a list of texts to the Elasticsearch index.
|
||||
|
||||
Args:
|
||||
texts (Iterable[str]): The texts to add to the index.
|
||||
metadatas (List[Dict[Any, Any]], optional): A list of metadata dictionaries
|
||||
to associate with the texts.
|
||||
model_id (str, optional): The ID of the model to use for transforming the
|
||||
texts into vectors.
|
||||
refresh_indices (bool, optional): Whether to refresh the Elasticsearch
|
||||
indices after adding the texts.
|
||||
**kwargs: Arbitrary keyword arguments.
|
||||
|
||||
Returns:
|
||||
A list of IDs for the added texts.
|
||||
"""
|
||||
|
||||
# Check if the index exists.
|
||||
if not self.client.indices.exists(index=self.index_name):
|
||||
dims = kwargs.get("dims")
|
||||
|
||||
if dims is None:
|
||||
raise ValueError("ElasticKnnSearch requires 'dims' parameter")
|
||||
|
||||
similarity = kwargs.get("similarity")
|
||||
optional_args = {}
|
||||
|
||||
if similarity is not None:
|
||||
optional_args["similarity"] = similarity
|
||||
|
||||
mapping = self._default_knn_mapping(dims=dims, **optional_args)
|
||||
self.create_knn_index(mapping)
|
||||
|
||||
embeddings = self.embedding.embed_documents(list(texts))
|
||||
|
||||
# body = []
|
||||
body: List[Mapping[str, Any]] = []
|
||||
for text, vector in zip(texts, embeddings):
|
||||
body.extend(
|
||||
[
|
||||
{"index": {"_index": self.index_name}},
|
||||
{"text": text, "vector": vector},
|
||||
]
|
||||
)
|
||||
|
||||
responses = self.client.bulk(operations=body)
|
||||
|
||||
ids = [
|
||||
item["index"]["_id"]
|
||||
for item in responses["items"]
|
||||
if item["index"]["result"] == "created"
|
||||
]
|
||||
|
||||
if refresh_indices:
|
||||
self.client.indices.refresh(index=self.index_name)
|
||||
|
||||
return ids
|
||||
|
||||
@classmethod
|
||||
def from_texts(
|
||||
cls,
|
||||
texts: List[str],
|
||||
embedding: Embeddings,
|
||||
metadatas: Optional[List[Dict[Any, Any]]] = None,
|
||||
**kwargs: Any,
|
||||
) -> ElasticKnnSearch:
|
||||
"""
|
||||
Create a new ElasticKnnSearch instance and add a list of texts to the
|
||||
Elasticsearch index.
|
||||
|
||||
Args:
|
||||
texts (List[str]): The texts to add to the index.
|
||||
embedding (Embeddings): The embedding model to use for transforming the
|
||||
texts into vectors.
|
||||
metadatas (List[Dict[Any, Any]], optional): A list of metadata dictionaries
|
||||
to associate with the texts.
|
||||
**kwargs: Arbitrary keyword arguments.
|
||||
|
||||
Returns:
|
||||
A new ElasticKnnSearch instance.
|
||||
"""
|
||||
|
||||
index_name = kwargs.get("index_name", str(uuid.uuid4()))
|
||||
es_connection = kwargs.get("es_connection")
|
||||
es_cloud_id = kwargs.get("es_cloud_id")
|
||||
es_user = kwargs.get("es_user")
|
||||
es_password = kwargs.get("es_password")
|
||||
vector_query_field = kwargs.get("vector_query_field", "vector")
|
||||
query_field = kwargs.get("query_field", "text")
|
||||
model_id = kwargs.get("model_id")
|
||||
dims = kwargs.get("dims")
|
||||
|
||||
if dims is None:
|
||||
raise ValueError("ElasticKnnSearch requires 'dims' parameter")
|
||||
|
||||
optional_args = {}
|
||||
|
||||
if vector_query_field is not None:
|
||||
optional_args["vector_query_field"] = vector_query_field
|
||||
|
||||
if query_field is not None:
|
||||
optional_args["query_field"] = query_field
|
||||
|
||||
knnvectorsearch = cls(
|
||||
index_name=index_name,
|
||||
embedding=embedding,
|
||||
es_connection=es_connection,
|
||||
es_cloud_id=es_cloud_id,
|
||||
es_user=es_user,
|
||||
es_password=es_password,
|
||||
**optional_args,
|
||||
)
|
||||
# Encode the provided texts and add them to the newly created index.
|
||||
knnvectorsearch.add_texts(texts, model_id=model_id, dims=dims, **optional_args)
|
||||
|
||||
return knnvectorsearch
|
||||
|
Loading…
Reference in New Issue
Block a user