Add use case nb position (#10299)

This commit is contained in:
Bagatur 2023-09-06 15:46:33 -07:00 committed by GitHub
parent ea5d29a702
commit 763212eafd
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
10 changed files with 98 additions and 40 deletions

View File

@ -1,5 +0,0 @@
# Web Scraping
Web scraping has historically been a challenging endeavor due to the ever-changing nature of website structures, making it tedious for developers to maintain their scraping scripts. Traditional methods often rely on specific HTML tags and patterns which, when altered, can disrupt data extraction processes.
Enter the LLM-based method for parsing HTML: By leveraging the capabilities of LLMs, and especially OpenAI Functions in LangChain's extraction chain, developers can instruct the model to extract only the desired data in a specified format. This method not only streamlines the extraction process but also significantly reduces the time spent on manual debugging and script modifications. Its adaptability means that even if websites undergo significant design changes, the extraction remains consistent and robust. This level of resilience translates to reduced maintenance efforts, cost savings, and ensures a higher quality of extracted data. Compared to its predecessors, the LLM-based approach wins out in the web scraping domain by transforming a historically cumbersome task into a more automated and efficient process.

View File

@ -1,12 +1,21 @@
{
"cells": [
{
"cell_type": "raw",
"id": "ea5c61b2-8b52-4270-bdb0-c4df88608f15",
"metadata": {},
"source": [
"---\n",
"sidebar_position: 1\n",
"title: Interacting with APIs\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "a15e6a18",
"metadata": {},
"source": [
"# Interacting with APIs\n",
"\n",
"[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/extras/use_cases/apis.ipynb)\n",
"\n",
"## Use case \n",
@ -69,9 +78,7 @@
"cell_type": "code",
"execution_count": 2,
"id": "30b780e3",
"metadata": {
"scrolled": false
},
"metadata": {},
"outputs": [
{
"name": "stderr",
@ -415,7 +422,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
"version": "3.9.1"
}
},
"nbformat": 4,

View File

@ -1,12 +1,21 @@
{
"cells": [
{
"cell_type": "raw",
"id": "22fd28c9-9b48-476c-bca8-20efef7fdb14",
"metadata": {},
"source": [
"---\n",
"sidebar_position: 1\n",
"title: Chatbots\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "ee7f95e4",
"metadata": {},
"source": [
"# Chatbots\n",
"\n",
"[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/extras/use_cases/chatbots.ipynb)\n",
"\n",
"## Use case\n",

View File

@ -1,11 +1,19 @@
{
"cells": [
{
"cell_type": "raw",
"metadata": {},
"source": [
"---\n",
"sidebar_position: 1\n",
"title: Code understanding\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Code Understanding\n",
"\n",
"[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/extras/use_cases/code_understanding.ipynb)\n",
"\n",
"## Use case\n",
@ -1047,7 +1055,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
"version": "3.9.1"
}
},
"nbformat": 4,

View File

@ -1,12 +1,21 @@
{
"cells": [
{
"cell_type": "raw",
"id": "df29b30a-fd27-4e08-8269-870df5631f9e",
"metadata": {},
"source": [
"---\n",
"sidebar_position: 1\n",
"title: Extraction\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "b84edb4e",
"metadata": {},
"source": [
"# Extraction\n",
"\n",
"[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/extras/use_cases/extraction.ipynb)\n",
"\n",
"## Use case\n",
@ -589,7 +598,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
"version": "3.9.1"
}
},
"nbformat": 4,

View File

@ -1 +1,2 @@
label: 'More'
position: 2

View File

@ -1,11 +1,19 @@
{
"cells": [
{
"cell_type": "raw",
"metadata": {},
"source": [
"---\n",
"sidebar_position: 1\n",
"title: SQL\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# SQL\n",
"\n",
"[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/extras/use_cases/sql.ipynb)\n",
"\n",
"## Use case\n",
@ -856,9 +864,7 @@
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"scrolled": false
},
"metadata": {},
"outputs": [
{
"name": "stdout",
@ -1014,9 +1020,7 @@
{
"cell_type": "code",
"execution_count": 55,
"metadata": {
"scrolled": false
},
"metadata": {},
"outputs": [
{
"name": "stdout",
@ -1256,7 +1260,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.17"
"version": "3.9.1"
}
},
"nbformat": 4,

View File

@ -1,12 +1,21 @@
{
"cells": [
{
"cell_type": "raw",
"id": "2aca8168-62ec-4bba-93f0-73da08cd1920",
"metadata": {},
"source": [
"---\n",
"sidebar_position: 1\n",
"title: Summarization\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "cf13f702",
"metadata": {},
"source": [
"# Summarization\n",
"\n",
"[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/extras/use_cases/summarization.ipynb)\n",
"\n",
"## Use case\n",
@ -548,7 +557,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
"version": "3.9.1"
}
},
"nbformat": 4,

View File

@ -1,12 +1,21 @@
{
"cells": [
{
"cell_type": "raw",
"id": "cb6f552e-775f-4d84-bc7c-dca94c06a33c",
"metadata": {},
"source": [
"---\n",
"sidebar_position: 1\n",
"title: Tagging\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "a0507a4b",
"metadata": {},
"source": [
"# Tagging\n",
"\n",
"[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/extras/use_cases/tagging.ipynb)\n",
"\n",
"## Use case\n",
@ -408,7 +417,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
"version": "3.9.1"
}
},
"nbformat": 4,

View File

@ -1,12 +1,21 @@
{
"cells": [
{
"cell_type": "raw",
"id": "e254cf03-49fc-4051-a4df-3a8e4e7d2688",
"metadata": {},
"source": [
"---\n",
"sidebar_position: 1\n",
"title: Web scraping\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "6605e7f7",
"metadata": {},
"source": [
"# Web Scraping\n",
"\n",
"[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/extras/use_cases/web_scraping.ipynb)\n",
"\n",
"## Use case\n",
@ -306,9 +315,7 @@
"cell_type": "code",
"execution_count": 7,
"id": "977560ba",
"metadata": {
"scrolled": false
},
"metadata": {},
"outputs": [
{
"name": "stdout",
@ -591,7 +598,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
"version": "3.9.1"
}
},
"nbformat": 4,