Harrison/fix create sql agent (#2870)

Co-authored-by: Timothé Pearce <timothe.pearce@gmail.com>
This commit is contained in:
Harrison Chase 2023-04-13 22:07:58 -07:00 committed by GitHub
parent 8a98e5b50b
commit 705596b46a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 60 additions and 17 deletions

View File

@ -28,7 +28,7 @@ class GitLoader(BaseLoader):
def load(self) -> List[Document]:
try:
from git import Blob, Repo
from git import Blob, Repo # type: ignore
except ImportError as ex:
raise ImportError(
"Could not import git python package. "

View File

@ -1,6 +1,7 @@
# flake8: noqa
"""Tools for interacting with a SQL database."""
from pydantic import BaseModel, Extra, Field, validator
from pydantic import BaseModel, Extra, Field, validator, root_validator
from typing import Any, Dict
from langchain.chains.llm import LLMChain
from langchain.prompts import PromptTemplate
@ -81,28 +82,29 @@ class QueryCheckerTool(BaseSQLDatabaseTool, BaseTool):
template: str = QUERY_CHECKER
llm: BaseLLM
llm_chain: LLMChain = Field(
default_factory=lambda: LLMChain(
llm=QueryCheckerTool.llm,
prompt=PromptTemplate(
template=QueryCheckerTool.template, input_variables=["query", "dialect"]
),
)
)
llm_chain: LLMChain = Field(init=False)
name = "query_checker_sql_db"
description = """
Use this tool to double check if your query is correct before executing it.
Always use this tool before executing a query with query_sql_db!
"""
@validator("llm_chain")
def validate_llm_chain_input_variables(cls, llm_chain: LLMChain) -> LLMChain:
"""Make sure the LLM chain has the correct input variables."""
if llm_chain.prompt.input_variables != ["query", "dialect"]:
@root_validator(pre=True)
def initialize_llm_chain(cls, values: Dict[str, Any]) -> Dict[str, Any]:
if "llm_chain" not in values:
values["llm_chain"] = LLMChain(
llm=values.get("llm"),
prompt=PromptTemplate(
template=QUERY_CHECKER, input_variables=["query", "dialect"]
),
)
if values["llm_chain"].prompt.input_variables != ["query", "dialect"]:
raise ValueError(
"LLM chain for QueryCheckerTool must have input variables ['query', 'dialect']"
)
return llm_chain
return values
def _run(self, query: str) -> str:
"""Use the LLM to check the query."""

View File

@ -0,0 +1,18 @@
from langchain.agents import create_sql_agent
from langchain.agents.agent_toolkits import SQLDatabaseToolkit
from langchain.sql_database import SQLDatabase
from tests.unit_tests.llms.fake_llm import FakeLLM
def test_create_sql_agent() -> None:
db = SQLDatabase.from_uri("sqlite:///:memory:")
queries = {"foo": "Final Answer: baz"}
llm = FakeLLM(queries=queries, sequential_responses=True)
toolkit = SQLDatabaseToolkit(db=db, llm=llm)
agent_executor = create_sql_agent(
llm=llm,
toolkit=toolkit,
)
assert agent_executor.run("hello") == "baz"

View File

@ -1,5 +1,7 @@
"""Fake LLM wrapper for testing purposes."""
from typing import Any, List, Mapping, Optional
from typing import Any, List, Mapping, Optional, cast
from pydantic import validator
from langchain.llms.base import LLM
@ -8,6 +10,18 @@ class FakeLLM(LLM):
"""Fake LLM wrapper for testing purposes."""
queries: Optional[Mapping] = None
sequential_responses: Optional[bool] = False
response_index: int = 0
@validator("queries", always=True)
def check_queries_required(
cls, queries: Optional[Mapping], values: Mapping[str, Any]
) -> Optional[Mapping]:
if values.get("sequential_response") and not queries:
raise ValueError(
"queries is required when sequential_response is set to True"
)
return queries
@property
def _llm_type(self) -> str:
@ -15,7 +29,9 @@ class FakeLLM(LLM):
return "fake"
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
"""First try to lookup in queries, else return 'foo' or 'bar'."""
if self.sequential_responses:
return self._get_next_response_in_sequence
if self.queries is not None:
return self.queries[prompt]
if stop is None:
@ -26,3 +42,10 @@ class FakeLLM(LLM):
@property
def _identifying_params(self) -> Mapping[str, Any]:
return {}
@property
def _get_next_response_in_sequence(self) -> str:
queries = cast(Mapping, self.queries)
response = queries[list(queries.keys())[self.response_index]]
self.response_index = self.response_index + 1
return response