mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
add async vector operations in VectorStore base class (#2535)
not currently implemented by any subclasses
This commit is contained in:
parent
481de8df7f
commit
6dbd29e440
@ -32,6 +32,15 @@ class VectorStore(ABC):
|
|||||||
List of ids from adding the texts into the vectorstore.
|
List of ids from adding the texts into the vectorstore.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
async def aadd_texts(
|
||||||
|
self,
|
||||||
|
texts: Iterable[str],
|
||||||
|
metadatas: Optional[List[dict]] = None,
|
||||||
|
**kwargs: Any,
|
||||||
|
) -> List[str]:
|
||||||
|
"""Run more texts through the embeddings and add to the vectorstore."""
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
def add_documents(self, documents: List[Document], **kwargs: Any) -> List[str]:
|
def add_documents(self, documents: List[Document], **kwargs: Any) -> List[str]:
|
||||||
"""Run more documents through the embeddings and add to the vectorstore.
|
"""Run more documents through the embeddings and add to the vectorstore.
|
||||||
|
|
||||||
@ -47,12 +56,33 @@ class VectorStore(ABC):
|
|||||||
metadatas = [doc.metadata for doc in documents]
|
metadatas = [doc.metadata for doc in documents]
|
||||||
return self.add_texts(texts, metadatas, **kwargs)
|
return self.add_texts(texts, metadatas, **kwargs)
|
||||||
|
|
||||||
|
async def aadd_documents(
|
||||||
|
self, documents: List[Document], **kwargs: Any
|
||||||
|
) -> List[str]:
|
||||||
|
"""Run more documents through the embeddings and add to the vectorstore.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
documents (List[Document]: Documents to add to the vectorstore.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
List[str]: List of IDs of the added texts.
|
||||||
|
"""
|
||||||
|
texts = [doc.page_content for doc in documents]
|
||||||
|
metadatas = [doc.metadata for doc in documents]
|
||||||
|
return await self.aadd_texts(texts, metadatas, **kwargs)
|
||||||
|
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
def similarity_search(
|
def similarity_search(
|
||||||
self, query: str, k: int = 4, **kwargs: Any
|
self, query: str, k: int = 4, **kwargs: Any
|
||||||
) -> List[Document]:
|
) -> List[Document]:
|
||||||
"""Return docs most similar to query."""
|
"""Return docs most similar to query."""
|
||||||
|
|
||||||
|
async def asimilarity_search(
|
||||||
|
self, query: str, k: int = 4, **kwargs: Any
|
||||||
|
) -> List[Document]:
|
||||||
|
"""Return docs most similar to query."""
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
def similarity_search_by_vector(
|
def similarity_search_by_vector(
|
||||||
self, embedding: List[float], k: int = 4, **kwargs: Any
|
self, embedding: List[float], k: int = 4, **kwargs: Any
|
||||||
) -> List[Document]:
|
) -> List[Document]:
|
||||||
@ -67,6 +97,12 @@ class VectorStore(ABC):
|
|||||||
"""
|
"""
|
||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
|
|
||||||
|
async def asimilarity_search_by_vector(
|
||||||
|
self, embedding: List[float], k: int = 4, **kwargs: Any
|
||||||
|
) -> List[Document]:
|
||||||
|
"""Return docs most similar to embedding vector."""
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
def max_marginal_relevance_search(
|
def max_marginal_relevance_search(
|
||||||
self, query: str, k: int = 4, fetch_k: int = 20
|
self, query: str, k: int = 4, fetch_k: int = 20
|
||||||
) -> List[Document]:
|
) -> List[Document]:
|
||||||
@ -85,6 +121,12 @@ class VectorStore(ABC):
|
|||||||
"""
|
"""
|
||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
|
|
||||||
|
async def amax_marginal_relevance_search(
|
||||||
|
self, query: str, k: int = 4, fetch_k: int = 20
|
||||||
|
) -> List[Document]:
|
||||||
|
"""Return docs selected using the maximal marginal relevance."""
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
def max_marginal_relevance_search_by_vector(
|
def max_marginal_relevance_search_by_vector(
|
||||||
self, embedding: List[float], k: int = 4, fetch_k: int = 20
|
self, embedding: List[float], k: int = 4, fetch_k: int = 20
|
||||||
) -> List[Document]:
|
) -> List[Document]:
|
||||||
@ -103,6 +145,12 @@ class VectorStore(ABC):
|
|||||||
"""
|
"""
|
||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
|
|
||||||
|
async def amax_marginal_relevance_search_by_vector(
|
||||||
|
self, embedding: List[float], k: int = 4, fetch_k: int = 20
|
||||||
|
) -> List[Document]:
|
||||||
|
"""Return docs selected using the maximal marginal relevance."""
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def from_documents(
|
def from_documents(
|
||||||
cls,
|
cls,
|
||||||
@ -115,6 +163,18 @@ class VectorStore(ABC):
|
|||||||
metadatas = [d.metadata for d in documents]
|
metadatas = [d.metadata for d in documents]
|
||||||
return cls.from_texts(texts, embedding, metadatas=metadatas, **kwargs)
|
return cls.from_texts(texts, embedding, metadatas=metadatas, **kwargs)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
async def afrom_documents(
|
||||||
|
cls,
|
||||||
|
documents: List[Document],
|
||||||
|
embedding: Embeddings,
|
||||||
|
**kwargs: Any,
|
||||||
|
) -> VectorStore:
|
||||||
|
"""Return VectorStore initialized from documents and embeddings."""
|
||||||
|
texts = [d.page_content for d in documents]
|
||||||
|
metadatas = [d.metadata for d in documents]
|
||||||
|
return await cls.afrom_texts(texts, embedding, metadatas=metadatas, **kwargs)
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
def from_texts(
|
def from_texts(
|
||||||
@ -126,6 +186,17 @@ class VectorStore(ABC):
|
|||||||
) -> VectorStore:
|
) -> VectorStore:
|
||||||
"""Return VectorStore initialized from texts and embeddings."""
|
"""Return VectorStore initialized from texts and embeddings."""
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
async def afrom_texts(
|
||||||
|
cls,
|
||||||
|
texts: List[str],
|
||||||
|
embedding: Embeddings,
|
||||||
|
metadatas: Optional[List[dict]] = None,
|
||||||
|
**kwargs: Any,
|
||||||
|
) -> VectorStore:
|
||||||
|
"""Return VectorStore initialized from texts and embeddings."""
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
def as_retriever(self, **kwargs: Any) -> BaseRetriever:
|
def as_retriever(self, **kwargs: Any) -> BaseRetriever:
|
||||||
return VectorStoreRetriever(vectorstore=self, **kwargs)
|
return VectorStoreRetriever(vectorstore=self, **kwargs)
|
||||||
|
|
||||||
@ -161,4 +232,14 @@ class VectorStoreRetriever(BaseRetriever, BaseModel):
|
|||||||
return docs
|
return docs
|
||||||
|
|
||||||
async def aget_relevant_documents(self, query: str) -> List[Document]:
|
async def aget_relevant_documents(self, query: str) -> List[Document]:
|
||||||
raise NotImplementedError("VectorStoreRetriever does not support async")
|
if self.search_type == "similarity":
|
||||||
|
docs = await self.vectorstore.asimilarity_search(
|
||||||
|
query, **self.search_kwargs
|
||||||
|
)
|
||||||
|
elif self.search_type == "mmr":
|
||||||
|
docs = await self.vectorstore.amax_marginal_relevance_search(
|
||||||
|
query, **self.search_kwargs
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise ValueError(f"search_type of {self.search_type} not allowed.")
|
||||||
|
return docs
|
||||||
|
Loading…
Reference in New Issue
Block a user