Add PipelineAI LLM integration (#3644)

Add PipelineAI LLM integration
This commit is contained in:
plutopulp 2023-04-27 16:22:26 +01:00 committed by GitHub
parent a35bbbfa9e
commit 6d6fd1b9e1
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 312 additions and 0 deletions

View File

@ -0,0 +1,19 @@
# PipelineAI
This page covers how to use the PipelineAI ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific PipelineAI wrappers.
## Installation and Setup
- Install with `pip install pipeline-ai`
- Get a Pipeline Cloud api key and set it as an environment variable (`PIPELINE_API_KEY`)
## Wrappers
### LLM
There exists a PipelineAI LLM wrapper, which you can access with
```python
from langchain.llms import PipelineAI
```

View File

@ -0,0 +1,171 @@
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# PipelineAI\n",
"\n",
"PipelineAI allows you to run your ML models at scale in the cloud. It also provides API access to [several LLM models](https://pipeline.ai).\n",
"\n",
"This notebook goes over how to use Langchain with [PipelineAI](https://docs.pipeline.ai/docs)."
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Install pipeline-ai\n",
"The `pipeline-ai` library is required to use the `PipelineAI` API, AKA `Pipeline Cloud`. Install `pipeline-ai` using `pip install pipeline-ai`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Install the package\n",
"!pip install pipeline-ai"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Imports"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from langchain.llms import PipelineAI\n",
"from langchain import PromptTemplate, LLMChain"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Set the Environment API Key\n",
"Make sure to get your API key from PipelineAI. Check out the [cloud quickstart guide](https://docs.pipeline.ai/docs/cloud-quickstart). You'll be given a 30 day free trial with 10 hours of serverless GPU compute to test different models."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"os.environ[\"PIPELINE_API_KEY\"] = \"YOUR_API_KEY_HERE\""
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create the PipelineAI instance\n",
"When instantiating PipelineAI, you need to specify the id or tag of the pipeline you want to use, e.g. `pipeline_key = \"public/gpt-j:base\"`. You then have the option of passing additional pipeline-specific keyword arguments:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"llm = PipelineAI(pipeline_key=\"YOUR_PIPELINE_KEY\", pipeline_kwargs={...})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create a Prompt Template\n",
"We will create a prompt template for Question and Answer."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"template = \"\"\"Question: {question}\n",
"\n",
"Answer: Let's think step by step.\"\"\"\n",
"\n",
"prompt = PromptTemplate(template=template, input_variables=[\"question\"])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initiate the LLMChain"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"llm_chain = LLMChain(prompt=prompt, llm=llm)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Run the LLMChain\n",
"Provide a question and run the LLMChain."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"question = \"What NFL team won the Super Bowl in the year Justin Beiber was born?\"\n",
"\n",
"llm_chain.run(question)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
},
"vscode": {
"interpreter": {
"hash": "a0a0263b650d907a3bfe41c0f8d6a63a071b884df3cfdc1579f00cdc1aed6b03"
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@ -35,6 +35,7 @@ from langchain.llms import (
Modal, Modal,
OpenAI, OpenAI,
Petals, Petals,
PipelineAI,
SagemakerEndpoint, SagemakerEndpoint,
StochasticAI, StochasticAI,
Writer, Writer,
@ -94,6 +95,7 @@ __all__ = [
"Modal", "Modal",
"OpenAI", "OpenAI",
"Petals", "Petals",
"PipelineAI",
"StochasticAI", "StochasticAI",
"Writer", "Writer",
"BasePromptTemplate", "BasePromptTemplate",

View File

@ -20,6 +20,7 @@ from langchain.llms.modal import Modal
from langchain.llms.nlpcloud import NLPCloud from langchain.llms.nlpcloud import NLPCloud
from langchain.llms.openai import AzureOpenAI, OpenAI, OpenAIChat from langchain.llms.openai import AzureOpenAI, OpenAI, OpenAIChat
from langchain.llms.petals import Petals from langchain.llms.petals import Petals
from langchain.llms.pipelineai import PipelineAI
from langchain.llms.predictionguard import PredictionGuard from langchain.llms.predictionguard import PredictionGuard
from langchain.llms.promptlayer_openai import PromptLayerOpenAI, PromptLayerOpenAIChat from langchain.llms.promptlayer_openai import PromptLayerOpenAI, PromptLayerOpenAIChat
from langchain.llms.replicate import Replicate from langchain.llms.replicate import Replicate
@ -46,6 +47,7 @@ __all__ = [
"OpenAI", "OpenAI",
"OpenAIChat", "OpenAIChat",
"Petals", "Petals",
"PipelineAI",
"HuggingFaceEndpoint", "HuggingFaceEndpoint",
"HuggingFaceHub", "HuggingFaceHub",
"SagemakerEndpoint", "SagemakerEndpoint",
@ -82,6 +84,7 @@ type_to_cls_dict: Dict[str, Type[BaseLLM]] = {
"nlpcloud": NLPCloud, "nlpcloud": NLPCloud,
"openai": OpenAI, "openai": OpenAI,
"petals": Petals, "petals": Petals,
"pipelineai": PipelineAI,
"huggingface_pipeline": HuggingFacePipeline, "huggingface_pipeline": HuggingFacePipeline,
"azure": AzureOpenAI, "azure": AzureOpenAI,
"replicate": Replicate, "replicate": Replicate,

View File

@ -0,0 +1,107 @@
"""Wrapper around Pipeline Cloud API."""
import logging
from typing import Any, Dict, List, Mapping, Optional
from pydantic import BaseModel, Extra, Field, root_validator
from langchain.llms.base import LLM
from langchain.llms.utils import enforce_stop_tokens
from langchain.utils import get_from_dict_or_env
logger = logging.getLogger(__name__)
class PipelineAI(LLM, BaseModel):
"""Wrapper around PipelineAI large language models.
To use, you should have the ``pipeline-ai`` python package installed,
and the environment variable ``PIPELINE_API_KEY`` set with your API key.
Any parameters that are valid to be passed to the call can be passed
in, even if not explicitly saved on this class.
Example:
.. code-block:: python
from langchain import PipelineAI
pipeline = PipelineAI(pipeline_key="")
"""
pipeline_key: str = ""
"""The id or tag of the target pipeline"""
pipeline_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Holds any pipeline parameters valid for `create` call not
explicitly specified."""
pipeline_api_key: Optional[str] = None
class Config:
"""Configuration for this pydantic config."""
extra = Extra.forbid
@root_validator(pre=True)
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
"""Build extra kwargs from additional params that were passed in."""
all_required_field_names = {field.alias for field in cls.__fields__.values()}
extra = values.get("pipeline_kwargs", {})
for field_name in list(values):
if field_name not in all_required_field_names:
if field_name in extra:
raise ValueError(f"Found {field_name} supplied twice.")
logger.warning(
f"""{field_name} was transfered to pipeline_kwargs.
Please confirm that {field_name} is what you intended."""
)
extra[field_name] = values.pop(field_name)
values["pipeline_kwargs"] = extra
return values
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
pipeline_api_key = get_from_dict_or_env(
values, "pipeline_api_key", "PIPELINE_API_KEY"
)
values["pipeline_api_key"] = pipeline_api_key
return values
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {
**{"pipeline_key": self.pipeline_key},
**{"pipeline_kwargs": self.pipeline_kwargs},
}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "pipeline_ai"
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
"""Call to Pipeline Cloud endpoint."""
try:
from pipeline import PipelineCloud
except ImportError:
raise ValueError(
"Could not import pipeline-ai python package. "
"Please install it with `pip install pipeline-ai`."
)
client = PipelineCloud(token=self.pipeline_api_key)
params = self.pipeline_kwargs or {}
run = client.run_pipeline(self.pipeline_key, [prompt, params])
try:
text = run.result_preview[0][0]
except AttributeError:
raise AttributeError(
f"A pipeline run should have a `result_preview` attribute."
f"Run was: {run}"
)
if stop is not None:
# I believe this is required since the stop tokens
# are not enforced by the pipeline parameters
text = enforce_stop_tokens(text, stop)
return text

View File

@ -0,0 +1,10 @@
"""Test Pipeline Cloud API wrapper."""
from langchain.llms.pipelineai import PipelineAI
def test_pipelineai_call() -> None:
"""Test valid call to Pipeline Cloud."""
llm = PipelineAI()
output = llm("Say foo:")
assert isinstance(output, str)