mirror of
https://github.com/hwchase17/langchain
synced 2024-11-02 09:40:22 +00:00
docs: added template to arxiv
page (#21846)
Updated `arXiv` page with the arxiv references from Templates (were references from Docs and API Refs, not Templates). Re #21450 CC @eyurtsev
This commit is contained in:
parent
e6207ad4f3
commit
6a59f76f2b
@ -1,54 +1,146 @@
|
||||
# arXiv
|
||||
|
||||
LangChain implements the latest research in the field of Natural Language Processing.
|
||||
This page contains `arXiv` papers referenced in the LangChain Documentation and API Reference.
|
||||
This page contains `arXiv` papers referenced in the LangChain Documentation, API Reference,
|
||||
and Templates.
|
||||
|
||||
## Summary
|
||||
|
||||
| arXiv id / Title | Authors | Published date 🔻 | LangChain Documentation and API Reference |
|
||||
|------------------|---------|-------------------|-------------------------|
|
||||
| `2307.03172v3` [Lost in the Middle: How Language Models Use Long Contexts](http://arxiv.org/abs/2307.03172v3) | Nelson F. Liu, Kevin Lin, John Hewitt, et al. | 2023-07-06 | `Docs:` [docs/modules/data_connection/retrievers/long_context_reorder](https://python.langchain.com/docs/modules/data_connection/retrievers/long_context_reorder)
|
||||
| arXiv id / Title | Authors | Published date 🔻 | LangChain Documentation|
|
||||
|------------------|---------|-------------------|------------------------|
|
||||
| `2312.06648v2` [Dense X Retrieval: What Retrieval Granularity Should We Use?](http://arxiv.org/abs/2312.06648v2) | Tong Chen, Hongwei Wang, Sihao Chen, et al. | 2023-12-11 | `Template:` [propositional-retrieval](https://python.langchain.com/docs/templates/propositional-retrieval)
|
||||
| `2311.09210v1` [Chain-of-Note: Enhancing Robustness in Retrieval-Augmented Language Models](http://arxiv.org/abs/2311.09210v1) | Wenhao Yu, Hongming Zhang, Xiaoman Pan, et al. | 2023-11-15 | `Template:` [chain-of-note-wiki](https://python.langchain.com/docs/templates/chain-of-note-wiki)
|
||||
| `2310.06117v2` [Take a Step Back: Evoking Reasoning via Abstraction in Large Language Models](http://arxiv.org/abs/2310.06117v2) | Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen, et al. | 2023-10-09 | `Template:` [stepback-qa-prompting](https://python.langchain.com/docs/templates/stepback-qa-prompting)
|
||||
| `2305.14283v3` [Query Rewriting for Retrieval-Augmented Large Language Models](http://arxiv.org/abs/2305.14283v3) | Xinbei Ma, Yeyun Gong, Pengcheng He, et al. | 2023-05-23 | `Template:` [rewrite-retrieve-read](https://python.langchain.com/docs/templates/rewrite-retrieve-read)
|
||||
| `2305.08291v1` [Large Language Model Guided Tree-of-Thought](http://arxiv.org/abs/2305.08291v1) | Jieyi Long | 2023-05-15 | `API:` [langchain_experimental.tot](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.tot)
|
||||
| `2305.06983v2` [Active Retrieval Augmented Generation](http://arxiv.org/abs/2305.06983v2) | Zhengbao Jiang, Frank F. Xu, Luyu Gao, et al. | 2023-05-11 | `Docs:` [docs/modules/chains](https://python.langchain.com/docs/modules/chains)
|
||||
| `2303.17580v4` [HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face](http://arxiv.org/abs/2303.17580v4) | Yongliang Shen, Kaitao Song, Xu Tan, et al. | 2023-03-30 | `API:` [langchain_experimental.autonomous_agents](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.autonomous_agents)
|
||||
| `2303.08774v6` [GPT-4 Technical Report](http://arxiv.org/abs/2303.08774v6) | OpenAI, Josh Achiam, Steven Adler, et al. | 2023-03-15 | `Docs:` [docs/integrations/vectorstores/mongodb_atlas](https://python.langchain.com/docs/integrations/vectorstores/mongodb_atlas)
|
||||
| `2301.10226v4` [A Watermark for Large Language Models](http://arxiv.org/abs/2301.10226v4) | John Kirchenbauer, Jonas Geiping, Yuxin Wen, et al. | 2023-01-24 | `API:` [langchain_community.llms...HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference), [langchain_community.llms...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community.llms...OCIModelDeploymentTGI](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI.html#langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI)
|
||||
| `2212.10496v1` [Precise Zero-Shot Dense Retrieval without Relevance Labels](http://arxiv.org/abs/2212.10496v1) | Luyu Gao, Xueguang Ma, Jimmy Lin, et al. | 2022-12-20 | `Docs:` [docs/use_cases/query_analysis/techniques/hyde](https://python.langchain.com/docs/use_cases/query_analysis/techniques/hyde), `API:` [langchain.chains...HypotheticalDocumentEmbedder](https://api.python.langchain.com/en/latest/chains/langchain.chains.hyde.base.HypotheticalDocumentEmbedder.html#langchain.chains.hyde.base.HypotheticalDocumentEmbedder)
|
||||
| `2212.08073v1` [Constitutional AI: Harmlessness from AI Feedback](http://arxiv.org/abs/2212.08073v1) | Yuntao Bai, Saurav Kadavath, Sandipan Kundu, et al. | 2022-12-15 | `Docs:` [docs/guides/productionization/evaluation/string/criteria_eval_chain](https://python.langchain.com/docs/guides/productionization/evaluation/string/criteria_eval_chain)
|
||||
| `2301.10226v4` [A Watermark for Large Language Models](http://arxiv.org/abs/2301.10226v4) | John Kirchenbauer, Jonas Geiping, Yuxin Wen, et al. | 2023-01-24 | `API:` [langchain_community.llms...OCIModelDeploymentTGI](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI.html#langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI), [langchain_community.llms...HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference), [langchain_community.llms...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint)
|
||||
| `2212.10496v1` [Precise Zero-Shot Dense Retrieval without Relevance Labels](http://arxiv.org/abs/2212.10496v1) | Luyu Gao, Xueguang Ma, Jimmy Lin, et al. | 2022-12-20 | `API:` [langchain.chains...HypotheticalDocumentEmbedder](https://api.python.langchain.com/en/latest/chains/langchain.chains.hyde.base.HypotheticalDocumentEmbedder.html#langchain.chains.hyde.base.HypotheticalDocumentEmbedder), `Template:` [hyde](https://python.langchain.com/docs/templates/hyde)
|
||||
| `2212.07425v3` [Robust and Explainable Identification of Logical Fallacies in Natural Language Arguments](http://arxiv.org/abs/2212.07425v3) | Zhivar Sourati, Vishnu Priya Prasanna Venkatesh, Darshan Deshpande, et al. | 2022-12-12 | `API:` [langchain_experimental.fallacy_removal](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.fallacy_removal)
|
||||
| `2211.13892v2` [Complementary Explanations for Effective In-Context Learning](http://arxiv.org/abs/2211.13892v2) | Xi Ye, Srinivasan Iyer, Asli Celikyilmaz, et al. | 2022-11-25 | `API:` [langchain_core.example_selectors...MaxMarginalRelevanceExampleSelector](https://api.python.langchain.com/en/latest/example_selectors/langchain_core.example_selectors.semantic_similarity.MaxMarginalRelevanceExampleSelector.html#langchain_core.example_selectors.semantic_similarity.MaxMarginalRelevanceExampleSelector)
|
||||
| `2211.10435v2` [PAL: Program-aided Language Models](http://arxiv.org/abs/2211.10435v2) | Luyu Gao, Aman Madaan, Shuyan Zhou, et al. | 2022-11-18 | `API:` [langchain_experimental.pal_chain...PALChain](https://api.python.langchain.com/en/latest/pal_chain/langchain_experimental.pal_chain.base.PALChain.html#langchain_experimental.pal_chain.base.PALChain), [langchain_experimental.pal_chain](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.pal_chain)
|
||||
| `2209.10785v2` [Deep Lake: a Lakehouse for Deep Learning](http://arxiv.org/abs/2209.10785v2) | Sasun Hambardzumyan, Abhinav Tuli, Levon Ghukasyan, et al. | 2022-09-22 | `Docs:` [docs/integrations/providers/activeloop_deeplake](https://python.langchain.com/docs/integrations/providers/activeloop_deeplake)
|
||||
| `2205.12654v1` [Bitext Mining Using Distilled Sentence Representations for Low-Resource Languages](http://arxiv.org/abs/2205.12654v1) | Kevin Heffernan, Onur Çelebi, Holger Schwenk | 2022-05-25 | `API:` [langchain_community.embeddings...LaserEmbeddings](https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.laser.LaserEmbeddings.html#langchain_community.embeddings.laser.LaserEmbeddings)
|
||||
| `2204.00498v1` [Evaluating the Text-to-SQL Capabilities of Large Language Models](http://arxiv.org/abs/2204.00498v1) | Nitarshan Rajkumar, Raymond Li, Dzmitry Bahdanau | 2022-03-15 | `Docs:` [docs/use_cases/sql/quickstart](https://python.langchain.com/docs/use_cases/sql/quickstart), `API:` [langchain_community.utilities...SQLDatabase](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.sql_database.SQLDatabase.html#langchain_community.utilities.sql_database.SQLDatabase), [langchain_community.utilities...SparkSQL](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.spark_sql.SparkSQL.html#langchain_community.utilities.spark_sql.SparkSQL)
|
||||
| `2204.00498v1` [Evaluating the Text-to-SQL Capabilities of Large Language Models](http://arxiv.org/abs/2204.00498v1) | Nitarshan Rajkumar, Raymond Li, Dzmitry Bahdanau | 2022-03-15 | `API:` [langchain_community.utilities...SQLDatabase](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.sql_database.SQLDatabase.html#langchain_community.utilities.sql_database.SQLDatabase), [langchain_community.utilities...SparkSQL](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.spark_sql.SparkSQL.html#langchain_community.utilities.spark_sql.SparkSQL)
|
||||
| `2202.00666v5` [Locally Typical Sampling](http://arxiv.org/abs/2202.00666v5) | Clara Meister, Tiago Pimentel, Gian Wiher, et al. | 2022-02-01 | `API:` [langchain_community.llms...HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference), [langchain_community.llms...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint)
|
||||
| `2103.00020v1` [Learning Transferable Visual Models From Natural Language Supervision](http://arxiv.org/abs/2103.00020v1) | Alec Radford, Jong Wook Kim, Chris Hallacy, et al. | 2021-02-26 | `API:` [langchain_experimental.open_clip](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.open_clip)
|
||||
| `1909.05858v2` [CTRL: A Conditional Transformer Language Model for Controllable Generation](http://arxiv.org/abs/1909.05858v2) | Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, et al. | 2019-09-11 | `API:` [langchain_community.llms...HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference), [langchain_community.llms...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint)
|
||||
| `1908.10084v1` [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](http://arxiv.org/abs/1908.10084v1) | Nils Reimers, Iryna Gurevych | 2019-08-27 | `Docs:` [docs/integrations/text_embedding/sentence_transformers](https://python.langchain.com/docs/integrations/text_embedding/sentence_transformers)
|
||||
|
||||
## Lost in the Middle: How Language Models Use Long Contexts
|
||||
## Dense X Retrieval: What Retrieval Granularity Should We Use?
|
||||
|
||||
- **arXiv id:** 2307.03172v3
|
||||
- **Title:** Lost in the Middle: How Language Models Use Long Contexts
|
||||
- **Authors:** Nelson F. Liu, Kevin Lin, John Hewitt, et al.
|
||||
- **Published Date:** 2023-07-06
|
||||
- **URL:** http://arxiv.org/abs/2307.03172v3
|
||||
- **LangChain Documentation:** [docs/modules/data_connection/retrievers/long_context_reorder](https://python.langchain.com/docs/modules/data_connection/retrievers/long_context_reorder)
|
||||
- **arXiv id:** 2312.06648v2
|
||||
- **Title:** Dense X Retrieval: What Retrieval Granularity Should We Use?
|
||||
- **Authors:** Tong Chen, Hongwei Wang, Sihao Chen, et al.
|
||||
- **Published Date:** 2023-12-11
|
||||
- **URL:** http://arxiv.org/abs/2312.06648v2
|
||||
- **LangChain:**
|
||||
|
||||
- **Template:** [propositional-retrieval](https://python.langchain.com/docs/templates/propositional-retrieval)
|
||||
|
||||
**Abstract:** While recent language models have the ability to take long contexts as input,
|
||||
relatively little is known about how well they use longer context. We analyze
|
||||
the performance of language models on two tasks that require identifying
|
||||
relevant information in their input contexts: multi-document question answering
|
||||
and key-value retrieval. We find that performance can degrade significantly
|
||||
when changing the position of relevant information, indicating that current
|
||||
language models do not robustly make use of information in long input contexts.
|
||||
In particular, we observe that performance is often highest when relevant
|
||||
information occurs at the beginning or end of the input context, and
|
||||
significantly degrades when models must access relevant information in the
|
||||
middle of long contexts, even for explicitly long-context models. Our analysis
|
||||
provides a better understanding of how language models use their input context
|
||||
and provides new evaluation protocols for future long-context language models.
|
||||
**Abstract:** Dense retrieval has become a prominent method to obtain relevant context or
|
||||
world knowledge in open-domain NLP tasks. When we use a learned dense retriever
|
||||
on a retrieval corpus at inference time, an often-overlooked design choice is
|
||||
the retrieval unit in which the corpus is indexed, e.g. document, passage, or
|
||||
sentence. We discover that the retrieval unit choice significantly impacts the
|
||||
performance of both retrieval and downstream tasks. Distinct from the typical
|
||||
approach of using passages or sentences, we introduce a novel retrieval unit,
|
||||
proposition, for dense retrieval. Propositions are defined as atomic
|
||||
expressions within text, each encapsulating a distinct factoid and presented in
|
||||
a concise, self-contained natural language format. We conduct an empirical
|
||||
comparison of different retrieval granularity. Our results reveal that
|
||||
proposition-based retrieval significantly outperforms traditional passage or
|
||||
sentence-based methods in dense retrieval. Moreover, retrieval by proposition
|
||||
also enhances the performance of downstream QA tasks, since the retrieved texts
|
||||
are more condensed with question-relevant information, reducing the need for
|
||||
lengthy input tokens and minimizing the inclusion of extraneous, irrelevant
|
||||
information.
|
||||
|
||||
## Chain-of-Note: Enhancing Robustness in Retrieval-Augmented Language Models
|
||||
|
||||
- **arXiv id:** 2311.09210v1
|
||||
- **Title:** Chain-of-Note: Enhancing Robustness in Retrieval-Augmented Language Models
|
||||
- **Authors:** Wenhao Yu, Hongming Zhang, Xiaoman Pan, et al.
|
||||
- **Published Date:** 2023-11-15
|
||||
- **URL:** http://arxiv.org/abs/2311.09210v1
|
||||
- **LangChain:**
|
||||
|
||||
- **Template:** [chain-of-note-wiki](https://python.langchain.com/docs/templates/chain-of-note-wiki)
|
||||
|
||||
**Abstract:** Retrieval-augmented language models (RALMs) represent a substantial
|
||||
advancement in the capabilities of large language models, notably in reducing
|
||||
factual hallucination by leveraging external knowledge sources. However, the
|
||||
reliability of the retrieved information is not always guaranteed. The
|
||||
retrieval of irrelevant data can lead to misguided responses, and potentially
|
||||
causing the model to overlook its inherent knowledge, even when it possesses
|
||||
adequate information to address the query. Moreover, standard RALMs often
|
||||
struggle to assess whether they possess adequate knowledge, both intrinsic and
|
||||
retrieved, to provide an accurate answer. In situations where knowledge is
|
||||
lacking, these systems should ideally respond with "unknown" when the answer is
|
||||
unattainable. In response to these challenges, we introduces Chain-of-Noting
|
||||
(CoN), a novel approach aimed at improving the robustness of RALMs in facing
|
||||
noisy, irrelevant documents and in handling unknown scenarios. The core idea of
|
||||
CoN is to generate sequential reading notes for retrieved documents, enabling a
|
||||
thorough evaluation of their relevance to the given question and integrating
|
||||
this information to formulate the final answer. We employed ChatGPT to create
|
||||
training data for CoN, which was subsequently trained on an LLaMa-2 7B model.
|
||||
Our experiments across four open-domain QA benchmarks show that RALMs equipped
|
||||
with CoN significantly outperform standard RALMs. Notably, CoN achieves an
|
||||
average improvement of +7.9 in EM score given entirely noisy retrieved
|
||||
documents and +10.5 in rejection rates for real-time questions that fall
|
||||
outside the pre-training knowledge scope.
|
||||
|
||||
## Take a Step Back: Evoking Reasoning via Abstraction in Large Language Models
|
||||
|
||||
- **arXiv id:** 2310.06117v2
|
||||
- **Title:** Take a Step Back: Evoking Reasoning via Abstraction in Large Language Models
|
||||
- **Authors:** Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen, et al.
|
||||
- **Published Date:** 2023-10-09
|
||||
- **URL:** http://arxiv.org/abs/2310.06117v2
|
||||
- **LangChain:**
|
||||
|
||||
- **Template:** [stepback-qa-prompting](https://python.langchain.com/docs/templates/stepback-qa-prompting)
|
||||
|
||||
**Abstract:** We present Step-Back Prompting, a simple prompting technique that enables
|
||||
LLMs to do abstractions to derive high-level concepts and first principles from
|
||||
instances containing specific details. Using the concepts and principles to
|
||||
guide reasoning, LLMs significantly improve their abilities in following a
|
||||
correct reasoning path towards the solution. We conduct experiments of
|
||||
Step-Back Prompting with PaLM-2L, GPT-4 and Llama2-70B models, and observe
|
||||
substantial performance gains on various challenging reasoning-intensive tasks
|
||||
including STEM, Knowledge QA, and Multi-Hop Reasoning. For instance, Step-Back
|
||||
Prompting improves PaLM-2L performance on MMLU (Physics and Chemistry) by 7%
|
||||
and 11% respectively, TimeQA by 27%, and MuSiQue by 7%.
|
||||
|
||||
## Query Rewriting for Retrieval-Augmented Large Language Models
|
||||
|
||||
- **arXiv id:** 2305.14283v3
|
||||
- **Title:** Query Rewriting for Retrieval-Augmented Large Language Models
|
||||
- **Authors:** Xinbei Ma, Yeyun Gong, Pengcheng He, et al.
|
||||
- **Published Date:** 2023-05-23
|
||||
- **URL:** http://arxiv.org/abs/2305.14283v3
|
||||
- **LangChain:**
|
||||
|
||||
- **Template:** [rewrite-retrieve-read](https://python.langchain.com/docs/templates/rewrite-retrieve-read)
|
||||
|
||||
**Abstract:** Large Language Models (LLMs) play powerful, black-box readers in the
|
||||
retrieve-then-read pipeline, making remarkable progress in knowledge-intensive
|
||||
tasks. This work introduces a new framework, Rewrite-Retrieve-Read instead of
|
||||
the previous retrieve-then-read for the retrieval-augmented LLMs from the
|
||||
perspective of the query rewriting. Unlike prior studies focusing on adapting
|
||||
either the retriever or the reader, our approach pays attention to the
|
||||
adaptation of the search query itself, for there is inevitably a gap between
|
||||
the input text and the needed knowledge in retrieval. We first prompt an LLM to
|
||||
generate the query, then use a web search engine to retrieve contexts.
|
||||
Furthermore, to better align the query to the frozen modules, we propose a
|
||||
trainable scheme for our pipeline. A small language model is adopted as a
|
||||
trainable rewriter to cater to the black-box LLM reader. The rewriter is
|
||||
trained using the feedback of the LLM reader by reinforcement learning.
|
||||
Evaluation is conducted on downstream tasks, open-domain QA and multiple-choice
|
||||
QA. Experiments results show consistent performance improvement, indicating
|
||||
that our framework is proven effective and scalable, and brings a new framework
|
||||
for retrieval-augmented LLM.
|
||||
|
||||
## Large Language Model Guided Tree-of-Thought
|
||||
|
||||
@ -57,8 +149,9 @@ and provides new evaluation protocols for future long-context language models.
|
||||
- **Authors:** Jieyi Long
|
||||
- **Published Date:** 2023-05-15
|
||||
- **URL:** http://arxiv.org/abs/2305.08291v1
|
||||
- **LangChain:**
|
||||
|
||||
- **LangChain API Reference:** [langchain_experimental.tot](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.tot)
|
||||
- **API Reference:** [langchain_experimental.tot](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.tot)
|
||||
|
||||
**Abstract:** In this paper, we introduce the Tree-of-Thought (ToT) framework, a novel
|
||||
approach aimed at improving the problem-solving capabilities of auto-regressive
|
||||
@ -78,35 +171,6 @@ significantly increase the success rate of Sudoku puzzle solving. Our
|
||||
implementation of the ToT-based Sudoku solver is available on GitHub:
|
||||
\url{https://github.com/jieyilong/tree-of-thought-puzzle-solver}.
|
||||
|
||||
## Active Retrieval Augmented Generation
|
||||
|
||||
- **arXiv id:** 2305.06983v2
|
||||
- **Title:** Active Retrieval Augmented Generation
|
||||
- **Authors:** Zhengbao Jiang, Frank F. Xu, Luyu Gao, et al.
|
||||
- **Published Date:** 2023-05-11
|
||||
- **URL:** http://arxiv.org/abs/2305.06983v2
|
||||
- **LangChain Documentation:** [docs/modules/chains](https://python.langchain.com/docs/modules/chains)
|
||||
|
||||
|
||||
**Abstract:** Despite the remarkable ability of large language models (LMs) to comprehend
|
||||
and generate language, they have a tendency to hallucinate and create factually
|
||||
inaccurate output. Augmenting LMs by retrieving information from external
|
||||
knowledge resources is one promising solution. Most existing retrieval
|
||||
augmented LMs employ a retrieve-and-generate setup that only retrieves
|
||||
information once based on the input. This is limiting, however, in more general
|
||||
scenarios involving generation of long texts, where continually gathering
|
||||
information throughout generation is essential. In this work, we provide a
|
||||
generalized view of active retrieval augmented generation, methods that
|
||||
actively decide when and what to retrieve across the course of the generation.
|
||||
We propose Forward-Looking Active REtrieval augmented generation (FLARE), a
|
||||
generic method which iteratively uses a prediction of the upcoming sentence to
|
||||
anticipate future content, which is then utilized as a query to retrieve
|
||||
relevant documents to regenerate the sentence if it contains low-confidence
|
||||
tokens. We test FLARE along with baselines comprehensively over 4 long-form
|
||||
knowledge-intensive generation tasks/datasets. FLARE achieves superior or
|
||||
competitive performance on all tasks, demonstrating the effectiveness of our
|
||||
method. Code and datasets are available at https://github.com/jzbjyb/FLARE.
|
||||
|
||||
## HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face
|
||||
|
||||
- **arXiv id:** 2303.17580v4
|
||||
@ -114,8 +178,9 @@ method. Code and datasets are available at https://github.com/jzbjyb/FLARE.
|
||||
- **Authors:** Yongliang Shen, Kaitao Song, Xu Tan, et al.
|
||||
- **Published Date:** 2023-03-30
|
||||
- **URL:** http://arxiv.org/abs/2303.17580v4
|
||||
- **LangChain:**
|
||||
|
||||
- **LangChain API Reference:** [langchain_experimental.autonomous_agents](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.autonomous_agents)
|
||||
- **API Reference:** [langchain_experimental.autonomous_agents](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.autonomous_agents)
|
||||
|
||||
**Abstract:** Solving complicated AI tasks with different domains and modalities is a key
|
||||
step toward artificial general intelligence. While there are numerous AI models
|
||||
@ -144,8 +209,9 @@ realization of artificial general intelligence.
|
||||
- **Authors:** OpenAI, Josh Achiam, Steven Adler, et al.
|
||||
- **Published Date:** 2023-03-15
|
||||
- **URL:** http://arxiv.org/abs/2303.08774v6
|
||||
- **LangChain Documentation:** [docs/integrations/vectorstores/mongodb_atlas](https://python.langchain.com/docs/integrations/vectorstores/mongodb_atlas)
|
||||
- **LangChain:**
|
||||
|
||||
- **Documentation:** [docs/integrations/vectorstores/mongodb_atlas](https://python.langchain.com/docs/integrations/vectorstores/mongodb_atlas)
|
||||
|
||||
**Abstract:** We report the development of GPT-4, a large-scale, multimodal model which can
|
||||
accept image and text inputs and produce text outputs. While less capable than
|
||||
@ -167,8 +233,9 @@ more than 1/1,000th the compute of GPT-4.
|
||||
- **Authors:** John Kirchenbauer, Jonas Geiping, Yuxin Wen, et al.
|
||||
- **Published Date:** 2023-01-24
|
||||
- **URL:** http://arxiv.org/abs/2301.10226v4
|
||||
- **LangChain:**
|
||||
|
||||
- **LangChain API Reference:** [langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference), [langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI.html#langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI)
|
||||
- **API Reference:** [langchain_community.llms...OCIModelDeploymentTGI](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI.html#langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI), [langchain_community.llms...HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference), [langchain_community.llms...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint)
|
||||
|
||||
**Abstract:** Potential harms of large language models can be mitigated by watermarking
|
||||
model output, i.e., embedding signals into generated text that are invisible to
|
||||
@ -191,8 +258,10 @@ family, and discuss robustness and security.
|
||||
- **Authors:** Luyu Gao, Xueguang Ma, Jimmy Lin, et al.
|
||||
- **Published Date:** 2022-12-20
|
||||
- **URL:** http://arxiv.org/abs/2212.10496v1
|
||||
- **LangChain Documentation:** [docs/use_cases/query_analysis/techniques/hyde](https://python.langchain.com/docs/use_cases/query_analysis/techniques/hyde)
|
||||
- **LangChain API Reference:** [langchain.chains.hyde.base.HypotheticalDocumentEmbedder](https://api.python.langchain.com/en/latest/chains/langchain.chains.hyde.base.HypotheticalDocumentEmbedder.html#langchain.chains.hyde.base.HypotheticalDocumentEmbedder)
|
||||
- **LangChain:**
|
||||
|
||||
- **API Reference:** [langchain.chains...HypotheticalDocumentEmbedder](https://api.python.langchain.com/en/latest/chains/langchain.chains.hyde.base.HypotheticalDocumentEmbedder.html#langchain.chains.hyde.base.HypotheticalDocumentEmbedder)
|
||||
- **Template:** [hyde](https://python.langchain.com/docs/templates/hyde)
|
||||
|
||||
**Abstract:** While dense retrieval has been shown effective and efficient across tasks and
|
||||
languages, it remains difficult to create effective fully zero-shot dense
|
||||
@ -212,35 +281,6 @@ state-of-the-art unsupervised dense retriever Contriever and shows strong
|
||||
performance comparable to fine-tuned retrievers, across various tasks (e.g. web
|
||||
search, QA, fact verification) and languages~(e.g. sw, ko, ja).
|
||||
|
||||
## Constitutional AI: Harmlessness from AI Feedback
|
||||
|
||||
- **arXiv id:** 2212.08073v1
|
||||
- **Title:** Constitutional AI: Harmlessness from AI Feedback
|
||||
- **Authors:** Yuntao Bai, Saurav Kadavath, Sandipan Kundu, et al.
|
||||
- **Published Date:** 2022-12-15
|
||||
- **URL:** http://arxiv.org/abs/2212.08073v1
|
||||
- **LangChain Documentation:** [docs/guides/productionization/evaluation/string/criteria_eval_chain](https://python.langchain.com/docs/guides/productionization/evaluation/string/criteria_eval_chain)
|
||||
|
||||
|
||||
**Abstract:** As AI systems become more capable, we would like to enlist their help to
|
||||
supervise other AIs. We experiment with methods for training a harmless AI
|
||||
assistant through self-improvement, without any human labels identifying
|
||||
harmful outputs. The only human oversight is provided through a list of rules
|
||||
or principles, and so we refer to the method as 'Constitutional AI'. The
|
||||
process involves both a supervised learning and a reinforcement learning phase.
|
||||
In the supervised phase we sample from an initial model, then generate
|
||||
self-critiques and revisions, and then finetune the original model on revised
|
||||
responses. In the RL phase, we sample from the finetuned model, use a model to
|
||||
evaluate which of the two samples is better, and then train a preference model
|
||||
from this dataset of AI preferences. We then train with RL using the preference
|
||||
model as the reward signal, i.e. we use 'RL from AI Feedback' (RLAIF). As a
|
||||
result we are able to train a harmless but non-evasive AI assistant that
|
||||
engages with harmful queries by explaining its objections to them. Both the SL
|
||||
and RL methods can leverage chain-of-thought style reasoning to improve the
|
||||
human-judged performance and transparency of AI decision making. These methods
|
||||
make it possible to control AI behavior more precisely and with far fewer human
|
||||
labels.
|
||||
|
||||
## Robust and Explainable Identification of Logical Fallacies in Natural Language Arguments
|
||||
|
||||
- **arXiv id:** 2212.07425v3
|
||||
@ -248,8 +288,9 @@ labels.
|
||||
- **Authors:** Zhivar Sourati, Vishnu Priya Prasanna Venkatesh, Darshan Deshpande, et al.
|
||||
- **Published Date:** 2022-12-12
|
||||
- **URL:** http://arxiv.org/abs/2212.07425v3
|
||||
- **LangChain:**
|
||||
|
||||
- **LangChain API Reference:** [langchain_experimental.fallacy_removal](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.fallacy_removal)
|
||||
- **API Reference:** [langchain_experimental.fallacy_removal](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.fallacy_removal)
|
||||
|
||||
**Abstract:** The spread of misinformation, propaganda, and flawed argumentation has been
|
||||
amplified in the Internet era. Given the volume of data and the subtlety of
|
||||
@ -280,8 +321,9 @@ further work on logical fallacy identification.
|
||||
- **Authors:** Xi Ye, Srinivasan Iyer, Asli Celikyilmaz, et al.
|
||||
- **Published Date:** 2022-11-25
|
||||
- **URL:** http://arxiv.org/abs/2211.13892v2
|
||||
- **LangChain:**
|
||||
|
||||
- **LangChain API Reference:** [langchain_core.example_selectors.semantic_similarity.MaxMarginalRelevanceExampleSelector](https://api.python.langchain.com/en/latest/example_selectors/langchain_core.example_selectors.semantic_similarity.MaxMarginalRelevanceExampleSelector.html#langchain_core.example_selectors.semantic_similarity.MaxMarginalRelevanceExampleSelector)
|
||||
- **API Reference:** [langchain_core.example_selectors...MaxMarginalRelevanceExampleSelector](https://api.python.langchain.com/en/latest/example_selectors/langchain_core.example_selectors.semantic_similarity.MaxMarginalRelevanceExampleSelector.html#langchain_core.example_selectors.semantic_similarity.MaxMarginalRelevanceExampleSelector)
|
||||
|
||||
**Abstract:** Large language models (LLMs) have exhibited remarkable capabilities in
|
||||
learning from explanations in prompts, but there has been limited understanding
|
||||
@ -307,8 +349,9 @@ performance across three real-world tasks on multiple LLMs.
|
||||
- **Authors:** Luyu Gao, Aman Madaan, Shuyan Zhou, et al.
|
||||
- **Published Date:** 2022-11-18
|
||||
- **URL:** http://arxiv.org/abs/2211.10435v2
|
||||
- **LangChain:**
|
||||
|
||||
- **LangChain API Reference:** [langchain_experimental.pal_chain.base.PALChain](https://api.python.langchain.com/en/latest/pal_chain/langchain_experimental.pal_chain.base.PALChain.html#langchain_experimental.pal_chain.base.PALChain), [langchain_experimental.pal_chain](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.pal_chain)
|
||||
- **API Reference:** [langchain_experimental.pal_chain...PALChain](https://api.python.langchain.com/en/latest/pal_chain/langchain_experimental.pal_chain.base.PALChain.html#langchain_experimental.pal_chain.base.PALChain), [langchain_experimental.pal_chain](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.pal_chain)
|
||||
|
||||
**Abstract:** Large language models (LLMs) have recently demonstrated an impressive ability
|
||||
to perform arithmetic and symbolic reasoning tasks, when provided with a few
|
||||
@ -340,8 +383,9 @@ publicly available at http://reasonwithpal.com/ .
|
||||
- **Authors:** Sasun Hambardzumyan, Abhinav Tuli, Levon Ghukasyan, et al.
|
||||
- **Published Date:** 2022-09-22
|
||||
- **URL:** http://arxiv.org/abs/2209.10785v2
|
||||
- **LangChain Documentation:** [docs/integrations/providers/activeloop_deeplake](https://python.langchain.com/docs/integrations/providers/activeloop_deeplake)
|
||||
- **LangChain:**
|
||||
|
||||
- **Documentation:** [docs/integrations/providers/activeloop_deeplake](https://python.langchain.com/docs/integrations/providers/activeloop_deeplake)
|
||||
|
||||
**Abstract:** Traditional data lakes provide critical data infrastructure for analytical
|
||||
workloads by enabling time travel, running SQL queries, ingesting data with
|
||||
@ -367,8 +411,9 @@ TensorFlow, JAX, and integrate with numerous MLOps tools.
|
||||
- **Authors:** Kevin Heffernan, Onur Çelebi, Holger Schwenk
|
||||
- **Published Date:** 2022-05-25
|
||||
- **URL:** http://arxiv.org/abs/2205.12654v1
|
||||
- **LangChain:**
|
||||
|
||||
- **LangChain API Reference:** [langchain_community.embeddings.laser.LaserEmbeddings](https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.laser.LaserEmbeddings.html#langchain_community.embeddings.laser.LaserEmbeddings)
|
||||
- **API Reference:** [langchain_community.embeddings...LaserEmbeddings](https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.laser.LaserEmbeddings.html#langchain_community.embeddings.laser.LaserEmbeddings)
|
||||
|
||||
**Abstract:** Scaling multilingual representation learning beyond the hundred most frequent
|
||||
languages is challenging, in particular to cover the long tail of low-resource
|
||||
@ -395,8 +440,9 @@ encoders, mine bitexts, and validate the bitexts by training NMT systems.
|
||||
- **Authors:** Nitarshan Rajkumar, Raymond Li, Dzmitry Bahdanau
|
||||
- **Published Date:** 2022-03-15
|
||||
- **URL:** http://arxiv.org/abs/2204.00498v1
|
||||
- **LangChain Documentation:** [docs/use_cases/sql/quickstart](https://python.langchain.com/docs/use_cases/sql/quickstart)
|
||||
- **LangChain API Reference:** [langchain_community.utilities.sql_database.SQLDatabase](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.sql_database.SQLDatabase.html#langchain_community.utilities.sql_database.SQLDatabase), [langchain_community.utilities.spark_sql.SparkSQL](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.spark_sql.SparkSQL.html#langchain_community.utilities.spark_sql.SparkSQL)
|
||||
- **LangChain:**
|
||||
|
||||
- **API Reference:** [langchain_community.utilities...SQLDatabase](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.sql_database.SQLDatabase.html#langchain_community.utilities.sql_database.SQLDatabase), [langchain_community.utilities...SparkSQL](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.spark_sql.SparkSQL.html#langchain_community.utilities.spark_sql.SparkSQL)
|
||||
|
||||
**Abstract:** We perform an empirical evaluation of Text-to-SQL capabilities of the Codex
|
||||
language model. We find that, without any finetuning, Codex is a strong
|
||||
@ -413,8 +459,9 @@ few-shot examples.
|
||||
- **Authors:** Clara Meister, Tiago Pimentel, Gian Wiher, et al.
|
||||
- **Published Date:** 2022-02-01
|
||||
- **URL:** http://arxiv.org/abs/2202.00666v5
|
||||
- **LangChain:**
|
||||
|
||||
- **LangChain API Reference:** [langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference), [langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint)
|
||||
- **API Reference:** [langchain_community.llms...HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference), [langchain_community.llms...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint)
|
||||
|
||||
**Abstract:** Today's probabilistic language generators fall short when it comes to
|
||||
producing coherent and fluent text despite the fact that the underlying models
|
||||
@ -444,8 +491,9 @@ reducing degenerate repetitions.
|
||||
- **Authors:** Alec Radford, Jong Wook Kim, Chris Hallacy, et al.
|
||||
- **Published Date:** 2021-02-26
|
||||
- **URL:** http://arxiv.org/abs/2103.00020v1
|
||||
- **LangChain:**
|
||||
|
||||
- **LangChain API Reference:** [langchain_experimental.open_clip](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.open_clip)
|
||||
- **API Reference:** [langchain_experimental.open_clip](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.open_clip)
|
||||
|
||||
**Abstract:** State-of-the-art computer vision systems are trained to predict a fixed set
|
||||
of predetermined object categories. This restricted form of supervision limits
|
||||
@ -475,8 +523,9 @@ https://github.com/OpenAI/CLIP.
|
||||
- **Authors:** Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, et al.
|
||||
- **Published Date:** 2019-09-11
|
||||
- **URL:** http://arxiv.org/abs/1909.05858v2
|
||||
- **LangChain:**
|
||||
|
||||
- **LangChain API Reference:** [langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference), [langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint)
|
||||
- **API Reference:** [langchain_community.llms...HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference), [langchain_community.llms...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint)
|
||||
|
||||
**Abstract:** Large-scale language models show promising text generation capabilities, but
|
||||
users cannot easily control particular aspects of the generated text. We
|
||||
@ -497,8 +546,9 @@ full-sized, pretrained versions of CTRL at https://github.com/salesforce/ctrl.
|
||||
- **Authors:** Nils Reimers, Iryna Gurevych
|
||||
- **Published Date:** 2019-08-27
|
||||
- **URL:** http://arxiv.org/abs/1908.10084v1
|
||||
- **LangChain Documentation:** [docs/integrations/text_embedding/sentence_transformers](https://python.langchain.com/docs/integrations/text_embedding/sentence_transformers)
|
||||
- **LangChain:**
|
||||
|
||||
- **Documentation:** [docs/integrations/text_embedding/sentence_transformers](https://python.langchain.com/docs/integrations/text_embedding/sentence_transformers)
|
||||
|
||||
**Abstract:** BERT (Devlin et al., 2018) and RoBERTa (Liu et al., 2019) has set a new
|
||||
state-of-the-art performance on sentence-pair regression tasks like semantic
|
||||
|
@ -11,15 +11,14 @@ from typing import Any, Dict, List, Set
|
||||
|
||||
from pydantic.v1 import BaseModel, root_validator
|
||||
|
||||
# TODO parse docstrings for arXiv references
|
||||
# TODO Generate a page with a table of the references with correspondent modules/classes/functions.
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
_ROOT_DIR = Path(os.path.abspath(__file__)).parents[2]
|
||||
DOCS_DIR = _ROOT_DIR / "docs" / "docs"
|
||||
CODE_DIR = _ROOT_DIR / "libs"
|
||||
TEMPLATES_DIR = _ROOT_DIR / "templates"
|
||||
ARXIV_ID_PATTERN = r"https://arxiv\.org/(abs|pdf)/(\d+\.\d+)"
|
||||
LANGCHAIN_PYTHON_URL = "python.langchain.com"
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -27,8 +26,9 @@ class ArxivPaper:
|
||||
"""ArXiv paper information."""
|
||||
|
||||
arxiv_id: str
|
||||
referencing_docs: list[str] # TODO: Add the referencing docs
|
||||
referencing_api_refs: list[str] # TODO: Add the referencing docs
|
||||
referencing_doc2url: dict[str, str]
|
||||
referencing_api_ref2url: dict[str, str]
|
||||
referencing_template2url: dict[str, str]
|
||||
title: str
|
||||
authors: list[str]
|
||||
abstract: str
|
||||
@ -218,6 +218,35 @@ def search_code_for_arxiv_references(code_dir: Path) -> dict[str, set[str]]:
|
||||
return arxiv_id2module_name_and_members_reduced
|
||||
|
||||
|
||||
def search_templates_for_arxiv_references(templates_dir: Path) -> dict[str, set[str]]:
|
||||
arxiv_url_pattern = re.compile(ARXIV_ID_PATTERN)
|
||||
# exclude_strings = {"file_path", "metadata", "link", "loader", "PyPDFLoader"}
|
||||
|
||||
# loop all the Readme.md files since they are parsed into LangChain documentation
|
||||
# exclude the Readme.md in the root folder
|
||||
files = (
|
||||
p.resolve()
|
||||
for p in Path(templates_dir).glob("**/*")
|
||||
if p.name.lower() in {"readme.md"} and p.parent.name != "templates"
|
||||
)
|
||||
arxiv_id2template_names: dict[str, set[str]] = {}
|
||||
for file in files:
|
||||
with open(file, "r", encoding="utf-8") as f:
|
||||
lines = f.readlines()
|
||||
for line in lines:
|
||||
# if any(exclude_string in line for exclude_string in exclude_strings):
|
||||
# continue
|
||||
matches = arxiv_url_pattern.search(line)
|
||||
if matches:
|
||||
arxiv_id = matches.group(2)
|
||||
template_name = file.parent.name
|
||||
if arxiv_id not in arxiv_id2template_names:
|
||||
arxiv_id2template_names[arxiv_id] = {template_name}
|
||||
else:
|
||||
arxiv_id2template_names[arxiv_id].add(template_name)
|
||||
return arxiv_id2template_names
|
||||
|
||||
|
||||
def _get_doc_path(file_parts: tuple[str, ...], file_extension) -> str:
|
||||
"""Get the relative path to the documentation page
|
||||
from the absolute path of the file.
|
||||
@ -257,58 +286,70 @@ def _get_module_name(file_parts: tuple[str, ...]) -> str:
|
||||
|
||||
|
||||
def compound_urls(
|
||||
arxiv_id2file_names: dict[str, set[str]], arxiv_id2code_urls: dict[str, set[str]]
|
||||
arxiv_id2file_names: dict[str, set[str]],
|
||||
arxiv_id2code_urls: dict[str, set[str]],
|
||||
arxiv_id2templates: dict[str, set[str]],
|
||||
) -> dict[str, dict[str, set[str]]]:
|
||||
arxiv_id2urls = dict()
|
||||
for arxiv_id, code_urls in arxiv_id2code_urls.items():
|
||||
arxiv_id2urls[arxiv_id] = {"api": code_urls}
|
||||
# intersection of the two sets
|
||||
if arxiv_id in arxiv_id2file_names:
|
||||
arxiv_id2urls[arxiv_id]["docs"] = arxiv_id2file_names[arxiv_id]
|
||||
# format urls and verify that the urls are correct
|
||||
arxiv_id2file_names_new = {}
|
||||
for arxiv_id, file_names in arxiv_id2file_names.items():
|
||||
if arxiv_id not in arxiv_id2code_urls:
|
||||
arxiv_id2urls[arxiv_id] = {"docs": file_names}
|
||||
key2urls = {
|
||||
key: _format_doc_url(key)
|
||||
for key in file_names
|
||||
if _is_url_ok(_format_doc_url(key))
|
||||
}
|
||||
if key2urls:
|
||||
arxiv_id2file_names_new[arxiv_id] = key2urls
|
||||
|
||||
arxiv_id2code_urls_new = {}
|
||||
for arxiv_id, code_urls in arxiv_id2code_urls.items():
|
||||
key2urls = {
|
||||
key: _format_api_ref_url(key)
|
||||
for key in code_urls
|
||||
if _is_url_ok(_format_api_ref_url(key))
|
||||
}
|
||||
if key2urls:
|
||||
arxiv_id2code_urls_new[arxiv_id] = key2urls
|
||||
|
||||
arxiv_id2templates_new = {}
|
||||
for arxiv_id, templates in arxiv_id2templates.items():
|
||||
key2urls = {
|
||||
key: _format_template_url(key)
|
||||
for key in templates
|
||||
if _is_url_ok(_format_template_url(key))
|
||||
}
|
||||
if key2urls:
|
||||
arxiv_id2templates_new[arxiv_id] = key2urls
|
||||
|
||||
arxiv_id2type2key2urls = dict.fromkeys(
|
||||
arxiv_id2file_names_new | arxiv_id2code_urls_new | arxiv_id2templates_new
|
||||
)
|
||||
arxiv_id2type2key2urls = {k: {} for k in arxiv_id2type2key2urls}
|
||||
for arxiv_id, key2urls in arxiv_id2file_names_new.items():
|
||||
arxiv_id2type2key2urls[arxiv_id]["docs"] = key2urls
|
||||
for arxiv_id, key2urls in arxiv_id2code_urls_new.items():
|
||||
arxiv_id2type2key2urls[arxiv_id]["apis"] = key2urls
|
||||
for arxiv_id, key2urls in arxiv_id2templates_new.items():
|
||||
arxiv_id2type2key2urls[arxiv_id]["templates"] = key2urls
|
||||
|
||||
# reverse sort by the arxiv_id (the newest papers first)
|
||||
ret = dict(sorted(arxiv_id2urls.items(), key=lambda item: item[0], reverse=True))
|
||||
return ret
|
||||
|
||||
|
||||
def _format_doc_link(doc_paths: list[str]) -> list[str]:
|
||||
return [
|
||||
f"[{doc_path}](https://python.langchain.com/{doc_path})"
|
||||
for doc_path in doc_paths
|
||||
]
|
||||
|
||||
|
||||
def _format_api_ref_link(
|
||||
doc_paths: list[str], compact: bool = False
|
||||
) -> list[str]: # TODO
|
||||
# agents/langchain_core.agents.AgentAction.html#langchain_core.agents.AgentAction
|
||||
ret = []
|
||||
for doc_path in doc_paths:
|
||||
module = doc_path.split("#")[1].replace("module-", "")
|
||||
if compact and module.count(".") > 2:
|
||||
# langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI
|
||||
# -> langchain_community.llms...OCIModelDeploymentTGI
|
||||
module_parts = module.split(".")
|
||||
module = f"{module_parts[0]}.{module_parts[1]}...{module_parts[-1]}"
|
||||
ret.append(
|
||||
f"[{module}](https://api.python.langchain.com/en/latest/{doc_path.split('langchain.com/')[-1]})"
|
||||
ret = dict(
|
||||
sorted(arxiv_id2type2key2urls.items(), key=lambda item: item[0], reverse=True)
|
||||
)
|
||||
return ret
|
||||
|
||||
|
||||
def log_results(arxiv_id2urls):
|
||||
arxiv_ids = arxiv_id2urls.keys()
|
||||
doc_number, api_number = 0, 0
|
||||
for urls in arxiv_id2urls.values():
|
||||
if "docs" in urls:
|
||||
doc_number += len(urls["docs"])
|
||||
if "api" in urls:
|
||||
api_number += len(urls["api"])
|
||||
logger.info(
|
||||
f"Found {len(arxiv_ids)} arXiv references in the {doc_number} docs and in {api_number} API Refs."
|
||||
)
|
||||
def _is_url_ok(url: str) -> bool:
|
||||
"""Check if the url page is open without error."""
|
||||
import requests
|
||||
|
||||
try:
|
||||
response = requests.get(url)
|
||||
response.raise_for_status()
|
||||
except requests.exceptions.RequestException as ex:
|
||||
logger.warning(f"Could not open the {url}.")
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
class ArxivAPIWrapper(BaseModel):
|
||||
@ -335,7 +376,7 @@ class ArxivAPIWrapper(BaseModel):
|
||||
return values
|
||||
|
||||
def get_papers(
|
||||
self, arxiv_id2urls: dict[str, dict[str, set[str]]]
|
||||
self, arxiv_id2type2key2urls: dict[str, dict[str, dict[str, str]]]
|
||||
) -> list[ArxivPaper]:
|
||||
"""
|
||||
Performs an arxiv search and returns information about the papers found.
|
||||
@ -343,8 +384,8 @@ class ArxivAPIWrapper(BaseModel):
|
||||
If an error occurs or no documents found, error text
|
||||
is returned instead.
|
||||
Args:
|
||||
arxiv_id2urls: Dictionary with arxiv_id as key and dictionary
|
||||
with sets of doc file names and API Ref urls.
|
||||
arxiv_id2type2key2urls: Dictionary with arxiv_id as key and dictionary
|
||||
with dicts of doc file names/API objects/templates to urls.
|
||||
|
||||
Returns:
|
||||
List of ArxivPaper objects.
|
||||
@ -356,10 +397,10 @@ class ArxivAPIWrapper(BaseModel):
|
||||
else:
|
||||
return [str(a) for a in authors]
|
||||
|
||||
if not arxiv_id2urls:
|
||||
if not arxiv_id2type2key2urls:
|
||||
return []
|
||||
try:
|
||||
arxiv_ids = list(arxiv_id2urls.keys())
|
||||
arxiv_ids = list(arxiv_id2type2key2urls.keys())
|
||||
results = self.arxiv_search(
|
||||
id_list=arxiv_ids,
|
||||
max_results=len(arxiv_ids),
|
||||
@ -374,38 +415,99 @@ class ArxivAPIWrapper(BaseModel):
|
||||
abstract=result.summary,
|
||||
url=result.entry_id,
|
||||
published_date=str(result.published.date()),
|
||||
referencing_docs=urls["docs"] if "docs" in urls else [],
|
||||
referencing_api_refs=urls["api"] if "api" in urls else [],
|
||||
referencing_doc2url=type2key2urls["docs"]
|
||||
if "docs" in type2key2urls
|
||||
else {},
|
||||
referencing_api_ref2url=type2key2urls["apis"]
|
||||
if "apis" in type2key2urls
|
||||
else {},
|
||||
referencing_template2url=type2key2urls["templates"]
|
||||
if "templates" in type2key2urls
|
||||
else {},
|
||||
)
|
||||
for result, urls in zip(results, arxiv_id2urls.values())
|
||||
for result, type2key2urls in zip(results, arxiv_id2type2key2urls.values())
|
||||
]
|
||||
return papers
|
||||
|
||||
|
||||
def generate_arxiv_references_page(file_name: str, papers: list[ArxivPaper]) -> None:
|
||||
def _format_doc_url(doc_path: str) -> str:
|
||||
return f"https://{LANGCHAIN_PYTHON_URL}/{doc_path}"
|
||||
|
||||
|
||||
def _format_api_ref_url(doc_path: str, compact: bool = False) -> str:
|
||||
# agents/langchain_core.agents.AgentAction.html#langchain_core.agents.AgentAction
|
||||
return f"https://api.{LANGCHAIN_PYTHON_URL}/en/latest/{doc_path.split('langchain.com/')[-1]}"
|
||||
|
||||
|
||||
def _format_template_url(template_name: str) -> str:
|
||||
return f"https://{LANGCHAIN_PYTHON_URL}/docs/templates/{template_name}"
|
||||
|
||||
|
||||
def _compact_module_full_name(doc_path: str) -> str:
|
||||
# agents/langchain_core.agents.AgentAction.html#langchain_core.agents.AgentAction
|
||||
module = doc_path.split("#")[1].replace("module-", "")
|
||||
if module.count(".") > 2:
|
||||
# langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI
|
||||
# -> langchain_community.llms...OCIModelDeploymentTGI
|
||||
module_parts = module.split(".")
|
||||
module = f"{module_parts[0]}.{module_parts[1]}...{module_parts[-1]}"
|
||||
return module
|
||||
|
||||
|
||||
def log_results(arxiv_id2type2key2urls):
|
||||
arxiv_ids = arxiv_id2type2key2urls.keys()
|
||||
doc_number, api_number, templates_number = 0, 0, 0
|
||||
for type2key2url in arxiv_id2type2key2urls.values():
|
||||
if "docs" in type2key2url:
|
||||
doc_number += len(type2key2url["docs"])
|
||||
if "apis" in type2key2url:
|
||||
api_number += len(type2key2url["apis"])
|
||||
if "templates" in type2key2url:
|
||||
templates_number += len(type2key2url["templates"])
|
||||
logger.warning(
|
||||
f"Found {len(arxiv_ids)} arXiv references in the {doc_number} docs, {api_number} API Refs,"
|
||||
f" and {templates_number} Templates."
|
||||
)
|
||||
|
||||
|
||||
def generate_arxiv_references_page(file_name: Path, papers: list[ArxivPaper]) -> None:
|
||||
with open(file_name, "w") as f:
|
||||
# Write the table headers
|
||||
f.write("""# arXiv
|
||||
|
||||
LangChain implements the latest research in the field of Natural Language Processing.
|
||||
This page contains `arXiv` papers referenced in the LangChain Documentation and API Reference.
|
||||
This page contains `arXiv` papers referenced in the LangChain Documentation, API Reference,
|
||||
and Templates.
|
||||
|
||||
## Summary
|
||||
|
||||
| arXiv id / Title | Authors | Published date 🔻 | LangChain Documentation and API Reference |
|
||||
|------------------|---------|-------------------|-------------------------|
|
||||
| arXiv id / Title | Authors | Published date 🔻 | LangChain Documentation|
|
||||
|------------------|---------|-------------------|------------------------|
|
||||
""")
|
||||
for paper in papers:
|
||||
refs = []
|
||||
if paper.referencing_docs:
|
||||
if paper.referencing_doc2url:
|
||||
refs += [
|
||||
"`Docs:` " + ", ".join(_format_doc_link(paper.referencing_docs))
|
||||
"`Docs:` "
|
||||
+ ", ".join(
|
||||
f"[{key}]({url})"
|
||||
for key, url in paper.referencing_doc2url.items()
|
||||
)
|
||||
]
|
||||
if paper.referencing_api_refs:
|
||||
if paper.referencing_api_ref2url:
|
||||
refs += [
|
||||
"`API:` "
|
||||
+ ", ".join(
|
||||
_format_api_ref_link(paper.referencing_api_refs, compact=True)
|
||||
f"[{_compact_module_full_name(key)}]({url})"
|
||||
for key, url in paper.referencing_api_ref2url.items()
|
||||
)
|
||||
]
|
||||
if paper.referencing_template2url:
|
||||
refs += [
|
||||
"`Template:` "
|
||||
+ ", ".join(
|
||||
f"[{key}]({url})"
|
||||
for key, url in paper.referencing_template2url.items()
|
||||
)
|
||||
]
|
||||
refs_str = ", ".join(refs)
|
||||
@ -417,15 +519,23 @@ This page contains `arXiv` papers referenced in the LangChain Documentation and
|
||||
|
||||
for paper in papers:
|
||||
docs_refs = (
|
||||
f"- **LangChain Documentation:** {', '.join(_format_doc_link(paper.referencing_docs))}"
|
||||
if paper.referencing_docs
|
||||
f" - **Documentation:** {', '.join(f'[{key}]({url})' for key, url in paper.referencing_doc2url.items())}"
|
||||
if paper.referencing_doc2url
|
||||
else ""
|
||||
)
|
||||
api_ref_refs = (
|
||||
f"- **LangChain API Reference:** {', '.join(_format_api_ref_link(paper.referencing_api_refs))}"
|
||||
if paper.referencing_api_refs
|
||||
f" - **API Reference:** {', '.join(f'[{_compact_module_full_name(key)}]({url})' for key, url in paper.referencing_api_ref2url.items())}"
|
||||
if paper.referencing_api_ref2url
|
||||
else ""
|
||||
)
|
||||
template_refs = (
|
||||
f" - **Template:** {', '.join(f'[{key}]({url})' for key, url in paper.referencing_template2url.items())}"
|
||||
if paper.referencing_template2url
|
||||
else ""
|
||||
)
|
||||
refs = "\n".join(
|
||||
[el for el in [docs_refs, api_ref_refs, template_refs] if el]
|
||||
)
|
||||
f.write(f"""
|
||||
## {paper.title}
|
||||
|
||||
@ -434,13 +544,14 @@ This page contains `arXiv` papers referenced in the LangChain Documentation and
|
||||
- **Authors:** {', '.join(paper.authors)}
|
||||
- **Published Date:** {paper.published_date}
|
||||
- **URL:** {paper.url}
|
||||
{docs_refs}
|
||||
{api_ref_refs}
|
||||
- **LangChain:**
|
||||
|
||||
{refs}
|
||||
|
||||
**Abstract:** {paper.abstract}
|
||||
""")
|
||||
|
||||
logger.info(f"Created the {file_name} file with {len(papers)} arXiv references.")
|
||||
logger.warning(f"Created the {file_name} file with {len(papers)} arXiv references.")
|
||||
|
||||
|
||||
def main():
|
||||
@ -450,14 +561,17 @@ def main():
|
||||
arxiv_id2module_name_and_members
|
||||
)
|
||||
arxiv_id2file_names = search_documentation_for_arxiv_references(DOCS_DIR)
|
||||
arxiv_id2urls = compound_urls(arxiv_id2file_names, arxiv_id2code_urls)
|
||||
log_results(arxiv_id2urls)
|
||||
arxiv_id2templates = search_templates_for_arxiv_references(TEMPLATES_DIR)
|
||||
arxiv_id2type2key2urls = compound_urls(
|
||||
arxiv_id2file_names, arxiv_id2code_urls, arxiv_id2templates
|
||||
)
|
||||
log_results(arxiv_id2type2key2urls)
|
||||
|
||||
# get the arXiv paper information
|
||||
papers = ArxivAPIWrapper().get_papers(arxiv_id2urls)
|
||||
papers = ArxivAPIWrapper().get_papers(arxiv_id2type2key2urls)
|
||||
|
||||
# generate the arXiv references page
|
||||
output_file = str(DOCS_DIR / "additional_resources" / "arxiv_references.mdx")
|
||||
output_file = DOCS_DIR / "additional_resources" / "arxiv_references.mdx"
|
||||
generate_arxiv_references_page(output_file, papers)
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user