mirror of
https://github.com/hwchase17/langchain
synced 2024-11-13 19:10:52 +00:00
core[patch]: make oai tool description optional (#27756)
This commit is contained in:
parent
b2da3115ed
commit
67ce05a0a7
@ -341,7 +341,7 @@ def convert_to_openai_function(
|
||||
A dictionary, Pydantic BaseModel class, TypedDict class, a LangChain
|
||||
Tool object, or a Python function. If a dictionary is passed in, it is
|
||||
assumed to already be a valid OpenAI function, a JSON schema with
|
||||
top-level 'title' and 'description' keys specified, an Anthropic format
|
||||
top-level 'title' key specified, an Anthropic format
|
||||
tool, or an Amazon Bedrock Converse format tool.
|
||||
strict:
|
||||
If True, model output is guaranteed to exactly match the JSON Schema
|
||||
@ -366,40 +366,47 @@ def convert_to_openai_function(
|
||||
.. versionchanged:: 0.3.14
|
||||
|
||||
Support for Amazon Bedrock Converse format tools added.
|
||||
|
||||
.. versionchanged:: 0.3.16
|
||||
|
||||
'description' and 'parameters' keys are now optional. Only 'name' is
|
||||
required and guaranteed to be part of the output.
|
||||
"""
|
||||
from langchain_core.tools import BaseTool
|
||||
|
||||
# already in OpenAI function format
|
||||
if isinstance(function, dict) and all(
|
||||
k in function for k in ("name", "description", "parameters")
|
||||
):
|
||||
oai_function = function
|
||||
# a JSON schema with title and description
|
||||
elif isinstance(function, dict) and all(
|
||||
k in function for k in ("title", "description", "properties")
|
||||
):
|
||||
function = function.copy()
|
||||
oai_function = {
|
||||
"name": function.pop("title"),
|
||||
"description": function.pop("description"),
|
||||
"parameters": function,
|
||||
}
|
||||
# an Anthropic format tool
|
||||
elif isinstance(function, dict) and all(
|
||||
k in function for k in ("name", "description", "input_schema")
|
||||
if isinstance(function, dict) and all(
|
||||
k in function for k in ("name", "input_schema")
|
||||
):
|
||||
oai_function = {
|
||||
"name": function["name"],
|
||||
"description": function["description"],
|
||||
"parameters": function["input_schema"],
|
||||
}
|
||||
if "description" in function:
|
||||
oai_function["description"] = function["description"]
|
||||
# an Amazon Bedrock Converse format tool
|
||||
elif isinstance(function, dict) and "toolSpec" in function:
|
||||
oai_function = {
|
||||
"name": function["toolSpec"]["name"],
|
||||
"description": function["toolSpec"]["description"],
|
||||
"parameters": function["toolSpec"]["inputSchema"]["json"],
|
||||
}
|
||||
if "description" in function["toolSpec"]:
|
||||
oai_function["description"] = function["toolSpec"]["description"]
|
||||
# already in OpenAI function format
|
||||
elif isinstance(function, dict) and "name" in function:
|
||||
oai_function = {
|
||||
k: v
|
||||
for k, v in function.items()
|
||||
if k in ("name", "description", "parameters", "strict")
|
||||
}
|
||||
# a JSON schema with title and description
|
||||
elif isinstance(function, dict) and "title" in function:
|
||||
function_copy = function.copy()
|
||||
oai_function = {"name": function_copy.pop("title")}
|
||||
if "description" in function_copy:
|
||||
oai_function["description"] = function_copy.pop("description")
|
||||
if function_copy and "properties" in function_copy:
|
||||
oai_function["parameters"] = function_copy
|
||||
elif isinstance(function, type) and is_basemodel_subclass(function):
|
||||
oai_function = cast(dict, convert_pydantic_to_openai_function(function))
|
||||
elif is_typeddict(function):
|
||||
@ -420,6 +427,13 @@ def convert_to_openai_function(
|
||||
raise ValueError(msg)
|
||||
|
||||
if strict is not None:
|
||||
if "strict" in oai_function and oai_function["strict"] != strict:
|
||||
msg = (
|
||||
f"Tool/function already has a 'strict' key wth value "
|
||||
f"{oai_function['strict']} which is different from the explicit "
|
||||
f"`strict` arg received {strict=}."
|
||||
)
|
||||
raise ValueError(msg)
|
||||
oai_function["strict"] = strict
|
||||
if strict:
|
||||
# As of 08/06/24, OpenAI requires that additionalProperties be supplied and
|
||||
@ -438,12 +452,16 @@ def convert_to_openai_tool(
|
||||
) -> dict[str, Any]:
|
||||
"""Convert a tool-like object to an OpenAI tool schema.
|
||||
|
||||
OpenAI tool schema reference:
|
||||
https://platform.openai.com/docs/api-reference/chat/create#chat-create-tools
|
||||
|
||||
Args:
|
||||
tool:
|
||||
Either a dictionary, a pydantic.BaseModel class, Python function, or
|
||||
BaseTool. If a dictionary is passed in, it is assumed to already be a valid
|
||||
OpenAI tool, OpenAI function, a JSON schema with top-level 'title' and
|
||||
'description' keys specified, or an Anthropic format tool.
|
||||
BaseTool. If a dictionary is passed in, it is
|
||||
assumed to already be a valid OpenAI function, a JSON schema with
|
||||
top-level 'title' key specified, an Anthropic format
|
||||
tool, or an Amazon Bedrock Converse format tool.
|
||||
strict:
|
||||
If True, model output is guaranteed to exactly match the JSON Schema
|
||||
provided in the function definition. If None, ``strict`` argument will not
|
||||
@ -460,6 +478,15 @@ def convert_to_openai_tool(
|
||||
.. versionchanged:: 0.3.13
|
||||
|
||||
Support for Anthropic format tools added.
|
||||
|
||||
.. versionchanged:: 0.3.14
|
||||
|
||||
Support for Amazon Bedrock Converse format tools added.
|
||||
|
||||
.. versionchanged:: 0.3.16
|
||||
|
||||
'description' and 'parameters' keys are now optional. Only 'name' is
|
||||
required and guaranteed to be part of the output.
|
||||
"""
|
||||
if isinstance(tool, dict) and tool.get("type") == "function" and "function" in tool:
|
||||
return tool
|
||||
|
@ -459,6 +459,130 @@ def test_convert_to_openai_function_nested_strict() -> None:
|
||||
assert actual == expected
|
||||
|
||||
|
||||
json_schema_no_description_no_params = {
|
||||
"title": "dummy_function",
|
||||
}
|
||||
|
||||
|
||||
json_schema_no_description = {
|
||||
"title": "dummy_function",
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"arg1": {"description": "foo", "type": "integer"},
|
||||
"arg2": {
|
||||
"description": "one of 'bar', 'baz'",
|
||||
"enum": ["bar", "baz"],
|
||||
"type": "string",
|
||||
},
|
||||
},
|
||||
"required": ["arg1", "arg2"],
|
||||
}
|
||||
|
||||
|
||||
anthropic_tool_no_description = {
|
||||
"name": "dummy_function",
|
||||
"input_schema": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"arg1": {"description": "foo", "type": "integer"},
|
||||
"arg2": {
|
||||
"description": "one of 'bar', 'baz'",
|
||||
"enum": ["bar", "baz"],
|
||||
"type": "string",
|
||||
},
|
||||
},
|
||||
"required": ["arg1", "arg2"],
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
bedrock_converse_tool_no_description = {
|
||||
"toolSpec": {
|
||||
"name": "dummy_function",
|
||||
"inputSchema": {
|
||||
"json": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"arg1": {"description": "foo", "type": "integer"},
|
||||
"arg2": {
|
||||
"description": "one of 'bar', 'baz'",
|
||||
"enum": ["bar", "baz"],
|
||||
"type": "string",
|
||||
},
|
||||
},
|
||||
"required": ["arg1", "arg2"],
|
||||
}
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
openai_function_no_description = {
|
||||
"name": "dummy_function",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"arg1": {"description": "foo", "type": "integer"},
|
||||
"arg2": {
|
||||
"description": "one of 'bar', 'baz'",
|
||||
"enum": ["bar", "baz"],
|
||||
"type": "string",
|
||||
},
|
||||
},
|
||||
"required": ["arg1", "arg2"],
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
openai_function_no_description_no_params = {
|
||||
"name": "dummy_function",
|
||||
}
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"func",
|
||||
[
|
||||
anthropic_tool_no_description,
|
||||
json_schema_no_description,
|
||||
bedrock_converse_tool_no_description,
|
||||
openai_function_no_description,
|
||||
],
|
||||
)
|
||||
def test_convert_to_openai_function_no_description(func: dict) -> None:
|
||||
expected = {
|
||||
"name": "dummy_function",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"arg1": {"description": "foo", "type": "integer"},
|
||||
"arg2": {
|
||||
"description": "one of 'bar', 'baz'",
|
||||
"enum": ["bar", "baz"],
|
||||
"type": "string",
|
||||
},
|
||||
},
|
||||
"required": ["arg1", "arg2"],
|
||||
},
|
||||
}
|
||||
actual = convert_to_openai_function(func)
|
||||
assert actual == expected
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"func",
|
||||
[
|
||||
json_schema_no_description_no_params,
|
||||
openai_function_no_description_no_params,
|
||||
],
|
||||
)
|
||||
def test_convert_to_openai_function_no_description_no_params(func: dict) -> None:
|
||||
expected = {
|
||||
"name": "dummy_function",
|
||||
}
|
||||
actual = convert_to_openai_function(func)
|
||||
assert actual == expected
|
||||
|
||||
|
||||
@pytest.mark.xfail(
|
||||
reason="Pydantic converts Optional[str] to str in .model_json_schema()"
|
||||
)
|
||||
|
Loading…
Reference in New Issue
Block a user