diff --git a/docs/docs/integrations/retrievers/self_query/mongodb_atlas.ipynb b/docs/docs/integrations/retrievers/self_query/mongodb_atlas.ipynb new file mode 100644 index 0000000000..3ee3b28c1c --- /dev/null +++ b/docs/docs/integrations/retrievers/self_query/mongodb_atlas.ipynb @@ -0,0 +1,321 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# MongoDB Atlas\n", + "\n", + "[MongoDB Atlas](https://www.mongodb.com/) is a document database that can be \n", + "used as a vector databse.\n", + "\n", + "In the walkthrough, we'll demo the `SelfQueryRetriever` with a `MongoDB Atlas` vector store." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Creating a MongoDB Atlas vectorstore\n", + "First we'll want to create a MongoDB Atlas VectorStore and seed it with some data. We've created a small demo set of documents that contain summaries of movies.\n", + "\n", + "NOTE: The self-query retriever requires you to have `lark` installed (`pip install lark`). We also need the `pymongo` package." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "#!pip install lark pymongo" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We want to use `OpenAIEmbeddings` so we have to get the OpenAI API Key." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "\n", + "OPENAI_API_KEY = \"Use your OpenAI key\"\n", + "\n", + "os.environ[\"OPENAI_API_KEY\"] = OPENAI_API_KEY" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from langchain.embeddings.openai import OpenAIEmbeddings\n", + "from langchain.schema import Document\n", + "from langchain.vectorstores import MongoDBAtlasVectorSearch\n", + "from pymongo import MongoClient\n", + "\n", + "CONNECTION_STRING = \"Use your MongoDB Atlas connection string\"\n", + "DB_NAME = \"Name of your MongoDB Atlas database\"\n", + "COLLECTION_NAME = \"Name of your collection in the database\"\n", + "INDEX_NAME = \"Name of a search index defined on the collection\"\n", + "\n", + "MongoClient = MongoClient(CONNECTION_STRING)\n", + "collection = MongoClient[DB_NAME][COLLECTION_NAME]\n", + "\n", + "embeddings = OpenAIEmbeddings()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "docs = [\n", + " Document(\n", + " page_content=\"A bunch of scientists bring back dinosaurs and mayhem breaks loose\",\n", + " metadata={\"year\": 1993, \"rating\": 7.7, \"genre\": \"action\"},\n", + " ),\n", + " Document(\n", + " page_content=\"Leo DiCaprio gets lost in a dream within a dream within a dream within a ...\",\n", + " metadata={\"year\": 2010, \"genre\": \"thriller\", \"rating\": 8.2},\n", + " ),\n", + " Document(\n", + " page_content=\"A bunch of normal-sized women are supremely wholesome and some men pine after them\",\n", + " metadata={\"year\": 2019, \"rating\": 8.3, \"genre\": \"drama\"},\n", + " ),\n", + " Document(\n", + " page_content=\"Three men walk into the Zone, three men walk out of the Zone\",\n", + " metadata={\"year\": 1979, \"rating\": 9.9, \"genre\": \"science fiction\"},\n", + " ),\n", + " Document(\n", + " page_content=\"A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea\",\n", + " metadata={\"year\": 2006, \"genre\": \"thriller\", \"rating\": 9.0},\n", + " ),\n", + " Document(\n", + " page_content=\"Toys come alive and have a blast doing so\",\n", + " metadata={\"year\": 1995, \"genre\": \"animated\", \"rating\": 9.3},\n", + " ),\n", + "]\n", + "\n", + "vectorstore = MongoDBAtlasVectorSearch.from_documents(\n", + " docs,\n", + " embeddings,\n", + " collection=collection,\n", + " index_name=INDEX_NAME,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, let's create a vector search index on your cluster. In the below example, `embedding` is the name of the field that contains the embedding vector. Please refer to the [documentation](https://www.mongodb.com/docs/atlas/atlas-search/field-types/knn-vector) to get more details on how to define an Atlas Vector Search index.\n", + "You can name the index `{COLLECTION_NAME}` and create the index on the namespace `{DB_NAME}.{COLLECTION_NAME}`. Finally, write the following definition in the JSON editor on MongoDB Atlas:\n", + "\n", + "```json\n", + "{\n", + " \"mappings\": {\n", + " \"dynamic\": true,\n", + " \"fields\": {\n", + " \"embedding\": {\n", + " \"dimensions\": 1536,\n", + " \"similarity\": \"cosine\",\n", + " \"type\": \"knnVector\"\n", + " },\n", + " \"genre\": {\n", + " \"type\": \"token\"\n", + " },\n", + " \"ratings\": {\n", + " \"type\": \"number\"\n", + " },\n", + " \"year\": {\n", + " \"type\": \"number\"\n", + " }\n", + " }\n", + " }\n", + "}\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Creating our self-querying retriever\n", + "Now we can instantiate our retriever. To do this we'll need to provide some information upfront about the metadata fields that our documents support and a short description of the document contents." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from langchain.chains.query_constructor.base import AttributeInfo\n", + "from langchain.llms import OpenAI\n", + "from langchain.retrievers.self_query.base import SelfQueryRetriever\n", + "\n", + "metadata_field_info = [\n", + " AttributeInfo(\n", + " name=\"genre\",\n", + " description=\"The genre of the movie\",\n", + " type=\"string\",\n", + " ),\n", + " AttributeInfo(\n", + " name=\"year\",\n", + " description=\"The year the movie was released\",\n", + " type=\"integer\",\n", + " ),\n", + " AttributeInfo(\n", + " name=\"rating\", description=\"A 1-10 rating for the movie\", type=\"float\"\n", + " ),\n", + "]\n", + "document_content_description = \"Brief summary of a movie\"" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "llm = OpenAI(temperature=0)\n", + "retriever = SelfQueryRetriever.from_llm(\n", + " llm, vectorstore, document_content_description, metadata_field_info, verbose=True\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Testing it out\n", + "And now we can try actually using our retriever!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# This example only specifies a relevant query\n", + "retriever.get_relevant_documents(\"What are some movies about dinosaurs\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# This example specifies a filter\n", + "retriever.get_relevant_documents(\"What are some highly rated movies (above 9)?\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# This example only specifies a query and a filter\n", + "retriever.get_relevant_documents(\n", + " \"I want to watch a movie about toys rated higher than 9\"\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# This example specifies a composite filter\n", + "retriever.get_relevant_documents(\n", + " \"What's a highly rated (above or equal 9) thriller film?\"\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# This example specifies a query and composite filter\n", + "retriever.get_relevant_documents(\n", + " \"What's a movie after 1990 but before 2005 that's all about dinosaurs, \\\n", + " and preferably has a lot of action\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Filter k\n", + "\n", + "We can also use the self query retriever to specify `k`: the number of documents to fetch.\n", + "\n", + "We can do this by passing `enable_limit=True` to the constructor." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "retriever = SelfQueryRetriever.from_llm(\n", + " llm,\n", + " vectorstore,\n", + " document_content_description,\n", + " metadata_field_info,\n", + " verbose=True,\n", + " enable_limit=True,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# This example only specifies a relevant query\n", + "retriever.get_relevant_documents(\"What are two movies about dinosaurs?\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": ".venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.5" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/libs/langchain/langchain/retrievers/self_query/base.py b/libs/langchain/langchain/retrievers/self_query/base.py index cb51639622..dc1bf174b8 100644 --- a/libs/langchain/langchain/retrievers/self_query/base.py +++ b/libs/langchain/langchain/retrievers/self_query/base.py @@ -21,6 +21,7 @@ from langchain.retrievers.self_query.dashvector import DashvectorTranslator from langchain.retrievers.self_query.deeplake import DeepLakeTranslator from langchain.retrievers.self_query.elasticsearch import ElasticsearchTranslator from langchain.retrievers.self_query.milvus import MilvusTranslator +from langchain.retrievers.self_query.mongodb_atlas import MongoDBAtlasTranslator from langchain.retrievers.self_query.myscale import MyScaleTranslator from langchain.retrievers.self_query.opensearch import OpenSearchTranslator from langchain.retrievers.self_query.pinecone import PineconeTranslator @@ -36,6 +37,7 @@ from langchain.vectorstores import ( DeepLake, ElasticsearchStore, Milvus, + MongoDBAtlasVectorSearch, MyScale, OpenSearchVectorSearch, Pinecone, @@ -66,6 +68,7 @@ def _get_builtin_translator(vectorstore: VectorStore) -> Visitor: SupabaseVectorStore: SupabaseVectorTranslator, TimescaleVector: TimescaleVectorTranslator, OpenSearchVectorSearch: OpenSearchTranslator, + MongoDBAtlasVectorSearch: MongoDBAtlasTranslator, } if isinstance(vectorstore, Qdrant): return QdrantTranslator(metadata_key=vectorstore.metadata_payload_key) diff --git a/libs/langchain/langchain/retrievers/self_query/mongodb_atlas.py b/libs/langchain/langchain/retrievers/self_query/mongodb_atlas.py new file mode 100644 index 0000000000..a10e7b58fa --- /dev/null +++ b/libs/langchain/langchain/retrievers/self_query/mongodb_atlas.py @@ -0,0 +1,74 @@ +"""Logic for converting internal query language to a valid MongoDB Atlas query.""" +from typing import Dict, Tuple, Union + +from langchain.chains.query_constructor.ir import ( + Comparator, + Comparison, + Operation, + Operator, + StructuredQuery, + Visitor, +) + +MULTIPLE_ARITY_COMPARATORS = [Comparator.IN, Comparator.NIN] + + +class MongoDBAtlasTranslator(Visitor): + """Translate Mongo internal query language elements to valid filters.""" + + """Subset of allowed logical comparators.""" + allowed_comparators = [ + Comparator.EQ, + Comparator.NE, + Comparator.GT, + Comparator.GTE, + Comparator.LT, + Comparator.LTE, + Comparator.IN, + Comparator.NIN, + ] + + """Subset of allowed logical operators.""" + allowed_operators = [Operator.AND, Operator.OR] + + ## Convert a operator or a comparator to Mongo Query Format + def _format_func(self, func: Union[Operator, Comparator]) -> str: + self._validate_func(func) + map_dict = { + Operator.AND: "$and", + Operator.OR: "$or", + Comparator.EQ: "$eq", + Comparator.NE: "$ne", + Comparator.GTE: "$gte", + Comparator.LTE: "$lte", + Comparator.LT: "$lt", + Comparator.GT: "$gt", + Comparator.IN: "$in", + Comparator.NIN: "$nin", + } + return map_dict[func] + + def visit_operation(self, operation: Operation) -> Dict: + args = [arg.accept(self) for arg in operation.arguments] + return {self._format_func(operation.operator): args} + + def visit_comparison(self, comparison: Comparison) -> Dict: + if comparison.comparator in MULTIPLE_ARITY_COMPARATORS and not isinstance( + comparison.value, list + ): + comparison.value = [comparison.value] + + comparator = self._format_func(comparison.comparator) + + attribute = comparison.attribute + + return {attribute: {comparator: comparison.value}} + + def visit_structured_query( + self, structured_query: StructuredQuery + ) -> Tuple[str, dict]: + if structured_query.filter is None: + kwargs = {} + else: + kwargs = {"pre_filter": structured_query.filter.accept(self)} + return structured_query.query, kwargs diff --git a/libs/langchain/tests/unit_tests/retrievers/self_query/test_mongodb_atlas.py b/libs/langchain/tests/unit_tests/retrievers/self_query/test_mongodb_atlas.py new file mode 100644 index 0000000000..9eceec6b70 --- /dev/null +++ b/libs/langchain/tests/unit_tests/retrievers/self_query/test_mongodb_atlas.py @@ -0,0 +1,131 @@ +from typing import Dict, Tuple + +from langchain.chains.query_constructor.ir import ( + Comparator, + Comparison, + Operation, + Operator, + StructuredQuery, +) +from langchain.retrievers.self_query.mongodb_atlas import MongoDBAtlasTranslator + +DEFAULT_TRANSLATOR = MongoDBAtlasTranslator() + + +def test_visit_comparison_lt() -> None: + comp = Comparison(comparator=Comparator.LT, attribute="qty", value=20) + expected = {"qty": {"$lt": 20}} + actual = DEFAULT_TRANSLATOR.visit_comparison(comp) + assert expected == actual + + +def test_visit_comparison_eq() -> None: + comp = Comparison(comparator=Comparator.EQ, attribute="qty", value=10) + expected = {"qty": {"$eq": 10}} + actual = DEFAULT_TRANSLATOR.visit_comparison(comp) + assert expected == actual + + +def test_visit_comparison_ne() -> None: + comp = Comparison(comparator=Comparator.NE, attribute="name", value="foo") + expected = {"name": {"$ne": "foo"}} + actual = DEFAULT_TRANSLATOR.visit_comparison(comp) + assert expected == actual + + +def test_visit_comparison_in() -> None: + comp = Comparison(comparator=Comparator.IN, attribute="name", value="foo") + expected = {"name": {"$in": ["foo"]}} + actual = DEFAULT_TRANSLATOR.visit_comparison(comp) + assert expected == actual + + +def test_visit_comparison_nin() -> None: + comp = Comparison(comparator=Comparator.NIN, attribute="name", value="foo") + expected = {"name": {"$nin": ["foo"]}} + actual = DEFAULT_TRANSLATOR.visit_comparison(comp) + assert expected == actual + + +def test_visit_operation() -> None: + op = Operation( + operator=Operator.AND, + arguments=[ + Comparison(comparator=Comparator.GTE, attribute="qty", value=10), + Comparison(comparator=Comparator.LTE, attribute="qty", value=20), + Comparison(comparator=Comparator.EQ, attribute="name", value="foo"), + ], + ) + expected = { + "$and": [ + {"qty": {"$gte": 10}}, + {"qty": {"$lte": 20}}, + {"name": {"$eq": "foo"}}, + ] + } + actual = DEFAULT_TRANSLATOR.visit_operation(op) + assert expected == actual + + +def test_visit_structured_query_no_filter() -> None: + query = "What is the capital of France?" + structured_query = StructuredQuery( + query=query, + filter=None, + ) + expected: Tuple[str, Dict] = (query, {}) + actual = DEFAULT_TRANSLATOR.visit_structured_query(structured_query) + assert expected == actual + + +def test_visit_structured_query_one_attr() -> None: + query = "What is the capital of France?" + comp = Comparison(comparator=Comparator.IN, attribute="qty", value=[5, 15, 20]) + structured_query = StructuredQuery( + query=query, + filter=comp, + ) + expected = ( + query, + {"pre_filter": {"qty": {"$in": [5, 15, 20]}}}, + ) + actual = DEFAULT_TRANSLATOR.visit_structured_query(structured_query) + assert expected == actual + + +def test_visit_structured_query_deep_nesting() -> None: + query = "What is the capital of France?" + op = Operation( + operator=Operator.AND, + arguments=[ + Comparison(comparator=Comparator.EQ, attribute="name", value="foo"), + Operation( + operator=Operator.OR, + arguments=[ + Comparison(comparator=Comparator.GT, attribute="qty", value=6), + Comparison( + comparator=Comparator.NIN, + attribute="tags", + value=["bar", "foo"], + ), + ], + ), + ], + ) + structured_query = StructuredQuery( + query=query, + filter=op, + ) + expected = ( + query, + { + "pre_filter": { + "$and": [ + {"name": {"$eq": "foo"}}, + {"$or": [{"qty": {"$gt": 6}}, {"tags": {"$nin": ["bar", "foo"]}}]}, + ] + } + }, + ) + actual = DEFAULT_TRANSLATOR.visit_structured_query(structured_query) + assert expected == actual