mirror of
https://github.com/hwchase17/langchain
synced 2024-11-08 07:10:35 +00:00
Harrison/pg vector move (#7580)
This commit is contained in:
parent
2667ddc686
commit
641fd74baa
@ -1,9 +1,50 @@
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import sqlalchemy
|
||||
from pgvector.sqlalchemy import Vector
|
||||
from sqlalchemy.dialects.postgresql import JSON, UUID
|
||||
from sqlalchemy.orm import relationship
|
||||
from sqlalchemy.orm import Session, relationship
|
||||
|
||||
from langchain.vectorstores.pgvector import BaseModel, CollectionStore
|
||||
from langchain.vectorstores.pgvector import BaseModel
|
||||
|
||||
|
||||
class CollectionStore(BaseModel):
|
||||
__tablename__ = "langchain_pg_collection"
|
||||
|
||||
name = sqlalchemy.Column(sqlalchemy.String)
|
||||
cmetadata = sqlalchemy.Column(JSON)
|
||||
|
||||
embeddings = relationship(
|
||||
"EmbeddingStore",
|
||||
back_populates="collection",
|
||||
passive_deletes=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def get_by_name(cls, session: Session, name: str) -> Optional["CollectionStore"]:
|
||||
return session.query(cls).filter(cls.name == name).first() # type: ignore
|
||||
|
||||
@classmethod
|
||||
def get_or_create(
|
||||
cls,
|
||||
session: Session,
|
||||
name: str,
|
||||
cmetadata: Optional[dict] = None,
|
||||
) -> Tuple["CollectionStore", bool]:
|
||||
"""
|
||||
Get or create a collection.
|
||||
Returns [Collection, bool] where the bool is True if the collection was created.
|
||||
"""
|
||||
created = False
|
||||
collection = cls.get_by_name(session, name)
|
||||
if collection:
|
||||
return collection, created
|
||||
|
||||
collection = cls(name=name, cmetadata=cmetadata)
|
||||
session.add(collection)
|
||||
session.commit()
|
||||
created = True
|
||||
return collection, created
|
||||
|
||||
|
||||
class EmbeddingStore(BaseModel):
|
||||
|
@ -4,17 +4,30 @@ from __future__ import annotations
|
||||
import enum
|
||||
import logging
|
||||
import uuid
|
||||
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, Type
|
||||
from typing import (
|
||||
TYPE_CHECKING,
|
||||
Any,
|
||||
Callable,
|
||||
Dict,
|
||||
Iterable,
|
||||
List,
|
||||
Optional,
|
||||
Tuple,
|
||||
Type,
|
||||
)
|
||||
|
||||
import sqlalchemy
|
||||
from sqlalchemy.dialects.postgresql import JSON, UUID
|
||||
from sqlalchemy.orm import Session, declarative_base, relationship
|
||||
from sqlalchemy.dialects.postgresql import UUID
|
||||
from sqlalchemy.orm import Session, declarative_base
|
||||
|
||||
from langchain.docstore.document import Document
|
||||
from langchain.embeddings.base import Embeddings
|
||||
from langchain.utils import get_from_dict_or_env
|
||||
from langchain.vectorstores.base import VectorStore
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from langchain.vectorstores._pgvector_data_models import CollectionStore
|
||||
|
||||
|
||||
class DistanceStrategy(str, enum.Enum):
|
||||
"""Enumerator of the Distance strategies."""
|
||||
@ -37,45 +50,6 @@ class BaseModel(Base):
|
||||
uuid = sqlalchemy.Column(UUID(as_uuid=True), primary_key=True, default=uuid.uuid4)
|
||||
|
||||
|
||||
class CollectionStore(BaseModel):
|
||||
__tablename__ = "langchain_pg_collection"
|
||||
|
||||
name = sqlalchemy.Column(sqlalchemy.String)
|
||||
cmetadata = sqlalchemy.Column(JSON)
|
||||
|
||||
embeddings = relationship(
|
||||
"EmbeddingStore",
|
||||
back_populates="collection",
|
||||
passive_deletes=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def get_by_name(cls, session: Session, name: str) -> Optional["CollectionStore"]:
|
||||
return session.query(cls).filter(cls.name == name).first() # type: ignore
|
||||
|
||||
@classmethod
|
||||
def get_or_create(
|
||||
cls,
|
||||
session: Session,
|
||||
name: str,
|
||||
cmetadata: Optional[dict] = None,
|
||||
) -> Tuple["CollectionStore", bool]:
|
||||
"""
|
||||
Get or create a collection.
|
||||
Returns [Collection, bool] where the bool is True if the collection was created.
|
||||
"""
|
||||
created = False
|
||||
collection = cls.get_by_name(session, name)
|
||||
if collection:
|
||||
return collection, created
|
||||
|
||||
collection = cls(name=name, cmetadata=cmetadata)
|
||||
session.add(collection)
|
||||
session.commit()
|
||||
created = True
|
||||
return collection, created
|
||||
|
||||
|
||||
class PGVector(VectorStore):
|
||||
"""VectorStore implementation using Postgres and pgvector.
|
||||
|
||||
@ -141,8 +115,12 @@ class PGVector(VectorStore):
|
||||
"""
|
||||
self._conn = self.connect()
|
||||
# self.create_vector_extension()
|
||||
from langchain.vectorstores._pgvector_data_models import EmbeddingStore
|
||||
from langchain.vectorstores._pgvector_data_models import (
|
||||
CollectionStore,
|
||||
EmbeddingStore,
|
||||
)
|
||||
|
||||
self.CollectionStore = CollectionStore
|
||||
self.EmbeddingStore = EmbeddingStore
|
||||
self.create_tables_if_not_exists()
|
||||
self.create_collection()
|
||||
@ -173,7 +151,7 @@ class PGVector(VectorStore):
|
||||
if self.pre_delete_collection:
|
||||
self.delete_collection()
|
||||
with Session(self._conn) as session:
|
||||
CollectionStore.get_or_create(
|
||||
self.CollectionStore.get_or_create(
|
||||
session, self.collection_name, cmetadata=self.collection_metadata
|
||||
)
|
||||
|
||||
@ -188,7 +166,7 @@ class PGVector(VectorStore):
|
||||
session.commit()
|
||||
|
||||
def get_collection(self, session: Session) -> Optional["CollectionStore"]:
|
||||
return CollectionStore.get_by_name(session, self.collection_name)
|
||||
return self.CollectionStore.get_by_name(session, self.collection_name)
|
||||
|
||||
@classmethod
|
||||
def __from(
|
||||
@ -200,6 +178,7 @@ class PGVector(VectorStore):
|
||||
ids: Optional[List[str]] = None,
|
||||
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
|
||||
distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY,
|
||||
connection_string: Optional[str] = None,
|
||||
pre_delete_collection: bool = False,
|
||||
**kwargs: Any,
|
||||
) -> PGVector:
|
||||
@ -208,7 +187,8 @@ class PGVector(VectorStore):
|
||||
|
||||
if not metadatas:
|
||||
metadatas = [{} for _ in texts]
|
||||
connection_string = cls.get_connection_string(kwargs)
|
||||
if connection_string is None:
|
||||
connection_string = cls.get_connection_string(kwargs)
|
||||
|
||||
store = cls(
|
||||
connection_string=connection_string,
|
||||
@ -389,8 +369,8 @@ class PGVector(VectorStore):
|
||||
.filter(filter_by)
|
||||
.order_by(sqlalchemy.asc("distance"))
|
||||
.join(
|
||||
CollectionStore,
|
||||
self.EmbeddingStore.collection_id == CollectionStore.uuid,
|
||||
self.CollectionStore,
|
||||
self.EmbeddingStore.collection_id == self.CollectionStore.uuid,
|
||||
)
|
||||
.limit(k)
|
||||
.all()
|
||||
|
Loading…
Reference in New Issue
Block a user