mirror of
https://github.com/hwchase17/langchain
synced 2024-11-11 19:11:02 +00:00
docs: integrations
reference updates 10 (#25556)
Added missed provider pages. Added descriptions, links.
This commit is contained in:
parent
9447925d94
commit
624e0747b9
@ -625,6 +625,7 @@ from langchain.retrievers import GoogleVertexAISearchRetriever
|
||||
> from Google Cloud allows enterprises to search, store, govern, and manage documents and their AI-extracted
|
||||
> data and metadata in a single platform.
|
||||
|
||||
Note: `GoogleDocumentAIWarehouseRetriever` is deprecated, use `DocumentAIWarehouseRetriever` (see below).
|
||||
```python
|
||||
from langchain.retrievers import GoogleDocumentAIWarehouseRetriever
|
||||
docai_wh_retriever = GoogleDocumentAIWarehouseRetriever(
|
||||
@ -636,6 +637,10 @@ documents = docai_wh_retriever.invoke(
|
||||
)
|
||||
```
|
||||
|
||||
```python
|
||||
from langchain_google_community.documentai_warehouse import DocumentAIWarehouseRetriever
|
||||
```
|
||||
|
||||
## Tools
|
||||
|
||||
### Text-to-Speech
|
||||
|
@ -466,6 +466,22 @@ See a [usage example](/docs/integrations/tools/playwright).
|
||||
from langchain_community.agent_toolkits import PlayWrightBrowserToolkit
|
||||
```
|
||||
|
||||
#### PlayWright Browser individual tools
|
||||
|
||||
You can use individual tools from the PlayWright Browser Toolkit.
|
||||
|
||||
```python
|
||||
from langchain_community.tools.playwright import ClickTool
|
||||
from langchain_community.tools.playwright import CurrentWebPageTool
|
||||
from langchain_community.tools.playwright import ExtractHyperlinksTool
|
||||
from langchain_community.tools.playwright import ExtractTextTool
|
||||
from langchain_community.tools.playwright import GetElementsTool
|
||||
from langchain_community.tools.playwright import NavigateTool
|
||||
from langchain_community.tools.playwright import NavigateBackTool
|
||||
```
|
||||
|
||||
|
||||
```python
|
||||
## Graphs
|
||||
|
||||
### Azure Cosmos DB for Apache Gremlin
|
||||
|
28
docs/docs/integrations/providers/connery.mdx
Normal file
28
docs/docs/integrations/providers/connery.mdx
Normal file
@ -0,0 +1,28 @@
|
||||
# Connery
|
||||
|
||||
>[Connery SDK](https://github.com/connery-io/connery-sdk) is an NPM package that
|
||||
> includes both an SDK and a CLI, designed for the development of plugins and actions.
|
||||
>
|
||||
>The CLI automates many things in the development process. The SDK
|
||||
> offers a JavaScript API for defining plugins and actions and packaging them
|
||||
> into a plugin server with a standardized REST API generated from the metadata.
|
||||
> The plugin server handles authorization, input validation, and logging.
|
||||
> So you can focus on the logic of your actions.
|
||||
>
|
||||
> See the use cases and examples in the [Connery SDK documentation](https://sdk.connery.io/docs/use-cases/)
|
||||
|
||||
## Toolkit
|
||||
|
||||
See [usage example](/docs/integrations/tools/connery).
|
||||
|
||||
```python
|
||||
from langchain_community.agent_toolkits.connery import ConneryToolkit
|
||||
```
|
||||
|
||||
## Tools
|
||||
|
||||
### ConneryAction
|
||||
|
||||
```python
|
||||
from langchain_community.tools.connery import ConneryService
|
||||
```
|
@ -6,12 +6,27 @@ This document demonstrates to leverage DashVector within the LangChain ecosystem
|
||||
It is broken into two parts: installation and setup, and then references to specific DashVector wrappers.
|
||||
|
||||
## Installation and Setup
|
||||
|
||||
|
||||
Install the Python SDK:
|
||||
|
||||
```bash
|
||||
pip install dashvector
|
||||
```
|
||||
|
||||
## VectorStore
|
||||
You must have an API key. Here are the [installation instructions](https://help.aliyun.com/document_detail/2510223.html).
|
||||
|
||||
|
||||
## Embedding models
|
||||
|
||||
```python
|
||||
from langchain_community.embeddings import DashScopeEmbeddings
|
||||
```
|
||||
|
||||
See the [use example](/docs/integrations/vectorstores/dashvector).
|
||||
|
||||
|
||||
## Vector Store
|
||||
|
||||
A DashVector Collection is wrapped as a familiar VectorStore for native usage within LangChain,
|
||||
which allows it to be readily used for various scenarios, such as semantic search or example selection.
|
||||
|
@ -19,7 +19,7 @@ os.environ["DATAFORSEO_PASSWORD"] = "your_password"
|
||||
|
||||
## Utility
|
||||
|
||||
The DataForSEO utility wraps the API. To import this utility, use:
|
||||
The `DataForSEO` utility wraps the API. To import this utility, use:
|
||||
|
||||
```python
|
||||
from langchain_community.utilities.dataforseo_api_search import DataForSeoAPIWrapper
|
||||
@ -36,6 +36,13 @@ from langchain.agents import load_tools
|
||||
tools = load_tools(["dataforseo-api-search"])
|
||||
```
|
||||
|
||||
This will load the following tools:
|
||||
|
||||
```python
|
||||
from langchain_community.tools import DataForSeoAPISearchRun
|
||||
from langchain_community.tools import DataForSeoAPISearchResults
|
||||
```
|
||||
|
||||
## Example usage
|
||||
|
||||
```python
|
||||
|
@ -1,10 +1,21 @@
|
||||
# DingoDB
|
||||
|
||||
This page covers how to use the DingoDB ecosystem within LangChain.
|
||||
It is broken into two parts: installation and setup, and then references to specific DingoDB wrappers.
|
||||
>[DingoDB](https://github.com/dingodb) is a distributed multi-modal vector
|
||||
> database. It combines the features of a data lake and a vector database,
|
||||
> allowing for the storage of any type of data (key-value, PDF, audio,
|
||||
> video, etc.) regardless of its size. Utilizing DingoDB, you can construct
|
||||
> your own Vector Ocean (the next-generation data architecture following data
|
||||
> warehouse and data lake). This enables
|
||||
> the analysis of both structured and unstructured data through
|
||||
> a singular SQL with exceptionally low latency in real time.
|
||||
|
||||
## Installation and Setup
|
||||
- Install the Python SDK with `pip install dingodb`
|
||||
|
||||
Install the Python SDK
|
||||
|
||||
```bash
|
||||
pip install dingodb
|
||||
```
|
||||
|
||||
## VectorStore
|
||||
|
||||
@ -12,6 +23,7 @@ There exists a wrapper around DingoDB indexes, allowing you to use it as a vecto
|
||||
whether for semantic search or example selection.
|
||||
|
||||
To import this vectorstore:
|
||||
|
||||
```python
|
||||
from langchain_community.vectorstores import Dingo
|
||||
```
|
||||
|
@ -20,7 +20,7 @@ LangChain provides an access to the `In-memory` and `HNSW` vector stores from th
|
||||
See a [usage example](/docs/integrations/vectorstores/docarray_hnsw).
|
||||
|
||||
```python
|
||||
from langchain_community.vectorstores DocArrayHnswSearch
|
||||
from langchain_community.vectorstores import DocArrayHnswSearch
|
||||
```
|
||||
See a [usage example](/docs/integrations/vectorstores/docarray_in_memory).
|
||||
|
||||
@ -28,3 +28,10 @@ See a [usage example](/docs/integrations/vectorstores/docarray_in_memory).
|
||||
from langchain_community.vectorstores DocArrayInMemorySearch
|
||||
```
|
||||
|
||||
## Retriever
|
||||
|
||||
See a [usage example](/docs/integrations/retrievers/docarray_retriever).
|
||||
|
||||
```python
|
||||
from langchain_community.retrievers import DocArrayRetriever
|
||||
```
|
||||
|
29
docs/docs/integrations/providers/pandas.mdx
Normal file
29
docs/docs/integrations/providers/pandas.mdx
Normal file
@ -0,0 +1,29 @@
|
||||
# Pandas
|
||||
|
||||
>[pandas](https://pandas.pydata.org) is a fast, powerful, flexible and easy to use open source data analysis and manipulation tool,
|
||||
built on top of the `Python` programming language.
|
||||
|
||||
## Installation and Setup
|
||||
|
||||
Install the `pandas` package using `pip`:
|
||||
|
||||
```bash
|
||||
pip install pandas
|
||||
```
|
||||
|
||||
|
||||
## Document loader
|
||||
|
||||
See a [usage example](/docs/integrations/document_loaders/pandas_dataframe).
|
||||
|
||||
```python
|
||||
from langchain_community.document_loaders import DataFrameLoader
|
||||
```
|
||||
|
||||
## Toolkit
|
||||
|
||||
See a [usage example](/docs/integrations/tools/pandas).
|
||||
|
||||
```python
|
||||
from langchain_experimental.agents.agent_toolkits import create_pandas_dataframe_agent
|
||||
```
|
Loading…
Reference in New Issue
Block a user