core[patch]: Fix "argument of type 'NoneType' is not iterable" error in LangChainTracer (#26576)

Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
This commit is contained in:
Nuno Campos 2024-09-17 10:29:46 -07:00 committed by GitHub
parent f4a65236ee
commit 5fc44989bf
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 10 additions and 6 deletions

View File

@ -301,7 +301,7 @@ class OpenAIAssistantV2Runnable(OpenAIAssistantRunnable):
inheritable_metadata=config.get("metadata"), inheritable_metadata=config.get("metadata"),
) )
run_manager = callback_manager.on_chain_start( run_manager = callback_manager.on_chain_start(
dumpd(self), input, name=config.get("run_name") dumpd(self), input, name=config.get("run_name") or self.get_name()
) )
files = _convert_file_ids_into_attachments(kwargs.get("file_ids", [])) files = _convert_file_ids_into_attachments(kwargs.get("file_ids", []))
@ -437,7 +437,7 @@ class OpenAIAssistantV2Runnable(OpenAIAssistantRunnable):
inheritable_metadata=config.get("metadata"), inheritable_metadata=config.get("metadata"),
) )
run_manager = callback_manager.on_chain_start( run_manager = callback_manager.on_chain_start(
dumpd(self), input, name=config.get("run_name") dumpd(self), input, name=config.get("run_name") or self.get_name()
) )
files = _convert_file_ids_into_attachments(kwargs.get("file_ids", [])) files = _convert_file_ids_into_attachments(kwargs.get("file_ids", []))

View File

@ -121,4 +121,4 @@ def test_callback_manager_configure_context_vars(
assert cb.completion_tokens == 1 assert cb.completion_tokens == 1
assert cb.total_cost > 0 assert cb.total_cost > 0
wait_for_all_tracers() wait_for_all_tracers()
assert LangChainTracer._persist_run_single.call_count == 1 # type: ignore assert LangChainTracer._persist_run_single.call_count == 4 # type: ignore

View File

@ -135,11 +135,13 @@ class Run(BaseRunV2):
@root_validator(pre=True) @root_validator(pre=True)
def assign_name(cls, values: dict) -> dict: def assign_name(cls, values: dict) -> dict:
"""Assign name to the run.""" """Assign name to the run."""
if values.get("name") is None: if values.get("name") is None and values["serialized"] is not None:
if "name" in values["serialized"]: if "name" in values["serialized"]:
values["name"] = values["serialized"]["name"] values["name"] = values["serialized"]["name"]
elif "id" in values["serialized"]: elif "id" in values["serialized"]:
values["name"] = values["serialized"]["id"][-1] values["name"] = values["serialized"]["id"][-1]
if values.get("name") is None:
values["name"] = "Unnamed"
if values.get("events") is None: if values.get("events") is None:
values["events"] = [] values["events"] = []
return values return values

View File

@ -310,7 +310,7 @@ class OpenAIAssistantRunnable(RunnableSerializable[Dict, OutputType]):
inheritable_metadata=config.get("metadata"), inheritable_metadata=config.get("metadata"),
) )
run_manager = callback_manager.on_chain_start( run_manager = callback_manager.on_chain_start(
dumpd(self), input, name=config.get("run_name") dumpd(self), input, name=config.get("run_name") or self.get_name()
) )
try: try:
# Being run within AgentExecutor and there are tool outputs to submit. # Being run within AgentExecutor and there are tool outputs to submit.
@ -429,7 +429,7 @@ class OpenAIAssistantRunnable(RunnableSerializable[Dict, OutputType]):
inheritable_metadata=config.get("metadata"), inheritable_metadata=config.get("metadata"),
) )
run_manager = callback_manager.on_chain_start( run_manager = callback_manager.on_chain_start(
dumpd(self), input, name=config.get("run_name") dumpd(self), input, name=config.get("run_name") or self.get_name()
) )
try: try:
# Being run within AgentExecutor and there are tool outputs to submit. # Being run within AgentExecutor and there are tool outputs to submit.

View File

@ -242,6 +242,7 @@ class LLMChain(Chain):
run_manager = callback_manager.on_chain_start( run_manager = callback_manager.on_chain_start(
None, None,
{"input_list": input_list}, {"input_list": input_list},
name=self.get_name(),
) )
try: try:
response = self.generate(input_list, run_manager=run_manager) response = self.generate(input_list, run_manager=run_manager)
@ -262,6 +263,7 @@ class LLMChain(Chain):
run_manager = await callback_manager.on_chain_start( run_manager = await callback_manager.on_chain_start(
None, None,
{"input_list": input_list}, {"input_list": input_list},
name=self.get_name(),
) )
try: try:
response = await self.agenerate(input_list, run_manager=run_manager) response = await self.agenerate(input_list, run_manager=run_manager)