mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
Harrison/base agent without docs (#2166)
This commit is contained in:
parent
1b7cfd7222
commit
5c907d9998
@ -19,13 +19,183 @@ from langchain.llms.base import BaseLLM
|
||||
from langchain.prompts.base import BasePromptTemplate
|
||||
from langchain.prompts.few_shot import FewShotPromptTemplate
|
||||
from langchain.prompts.prompt import PromptTemplate
|
||||
from langchain.schema import AgentAction, AgentFinish, BaseMessage
|
||||
from langchain.schema import AgentAction, AgentFinish, BaseMessage, BaseOutputParser
|
||||
from langchain.tools.base import BaseTool
|
||||
|
||||
logger = logging.getLogger()
|
||||
|
||||
|
||||
class Agent(BaseModel):
|
||||
class BaseSingleActionAgent(BaseModel):
|
||||
"""Base Agent class."""
|
||||
|
||||
@property
|
||||
def return_values(self) -> List[str]:
|
||||
"""Return values of the agent."""
|
||||
return ["output"]
|
||||
|
||||
def get_allowed_tools(self) -> Optional[List[str]]:
|
||||
return None
|
||||
|
||||
@abstractmethod
|
||||
def plan(
|
||||
self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any
|
||||
) -> Union[AgentAction, AgentFinish]:
|
||||
"""Given input, decided what to do.
|
||||
|
||||
Args:
|
||||
intermediate_steps: Steps the LLM has taken to date,
|
||||
along with observations
|
||||
**kwargs: User inputs.
|
||||
|
||||
Returns:
|
||||
Action specifying what tool to use.
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
async def aplan(
|
||||
self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any
|
||||
) -> Union[AgentAction, AgentFinish]:
|
||||
"""Given input, decided what to do.
|
||||
|
||||
Args:
|
||||
intermediate_steps: Steps the LLM has taken to date,
|
||||
along with observations
|
||||
**kwargs: User inputs.
|
||||
|
||||
Returns:
|
||||
Action specifying what tool to use.
|
||||
"""
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
def input_keys(self) -> List[str]:
|
||||
"""Return the input keys.
|
||||
|
||||
:meta private:
|
||||
"""
|
||||
|
||||
def return_stopped_response(
|
||||
self,
|
||||
early_stopping_method: str,
|
||||
intermediate_steps: List[Tuple[AgentAction, str]],
|
||||
**kwargs: Any,
|
||||
) -> AgentFinish:
|
||||
"""Return response when agent has been stopped due to max iterations."""
|
||||
if early_stopping_method == "force":
|
||||
# `force` just returns a constant string
|
||||
return AgentFinish({"output": "Agent stopped due to max iterations."}, "")
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Got unsupported early_stopping_method `{early_stopping_method}`"
|
||||
)
|
||||
|
||||
@property
|
||||
def _agent_type(self) -> str:
|
||||
"""Return Identifier of agent type."""
|
||||
raise NotImplementedError
|
||||
|
||||
def dict(self, **kwargs: Any) -> Dict:
|
||||
"""Return dictionary representation of agent."""
|
||||
_dict = super().dict()
|
||||
_dict["_type"] = self._agent_type
|
||||
return _dict
|
||||
|
||||
def save(self, file_path: Union[Path, str]) -> None:
|
||||
"""Save the agent.
|
||||
|
||||
Args:
|
||||
file_path: Path to file to save the agent to.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
# If working with agent executor
|
||||
agent.agent.save(file_path="path/agent.yaml")
|
||||
"""
|
||||
# Convert file to Path object.
|
||||
if isinstance(file_path, str):
|
||||
save_path = Path(file_path)
|
||||
else:
|
||||
save_path = file_path
|
||||
|
||||
directory_path = save_path.parent
|
||||
directory_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Fetch dictionary to save
|
||||
agent_dict = self.dict()
|
||||
|
||||
if save_path.suffix == ".json":
|
||||
with open(file_path, "w") as f:
|
||||
json.dump(agent_dict, f, indent=4)
|
||||
elif save_path.suffix == ".yaml":
|
||||
with open(file_path, "w") as f:
|
||||
yaml.dump(agent_dict, f, default_flow_style=False)
|
||||
else:
|
||||
raise ValueError(f"{save_path} must be json or yaml")
|
||||
|
||||
def tool_run_logging_kwargs(self) -> Dict:
|
||||
return {}
|
||||
|
||||
|
||||
class AgentOutputParser(BaseOutputParser):
|
||||
@abstractmethod
|
||||
def parse(self, text: str) -> Union[AgentAction, AgentFinish]:
|
||||
"""Parse text into agent action/finish."""
|
||||
|
||||
|
||||
class LLMSingleActionAgent(BaseSingleActionAgent):
|
||||
llm_chain: LLMChain
|
||||
output_parser: AgentOutputParser
|
||||
stop: List[str]
|
||||
|
||||
@property
|
||||
def input_keys(self) -> List[str]:
|
||||
return list(set(self.llm_chain.input_keys) - {"intermediate_steps"})
|
||||
|
||||
def plan(
|
||||
self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any
|
||||
) -> Union[AgentAction, AgentFinish]:
|
||||
"""Given input, decided what to do.
|
||||
|
||||
Args:
|
||||
intermediate_steps: Steps the LLM has taken to date,
|
||||
along with observations
|
||||
**kwargs: User inputs.
|
||||
|
||||
Returns:
|
||||
Action specifying what tool to use.
|
||||
"""
|
||||
output = self.llm_chain.run(
|
||||
intermediate_steps=intermediate_steps, stop=self.stop, **kwargs
|
||||
)
|
||||
return self.output_parser.parse(output)
|
||||
|
||||
async def aplan(
|
||||
self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any
|
||||
) -> Union[AgentAction, AgentFinish]:
|
||||
"""Given input, decided what to do.
|
||||
|
||||
Args:
|
||||
intermediate_steps: Steps the LLM has taken to date,
|
||||
along with observations
|
||||
**kwargs: User inputs.
|
||||
|
||||
Returns:
|
||||
Action specifying what tool to use.
|
||||
"""
|
||||
output = await self.llm_chain.arun(
|
||||
intermediate_steps=intermediate_steps, stop=self.stop, **kwargs
|
||||
)
|
||||
return self.output_parser.parse(output)
|
||||
|
||||
def tool_run_logging_kwargs(self) -> Dict:
|
||||
return {
|
||||
"llm_prefix": "",
|
||||
"observation_prefix": "" if len(self.stop) == 0 else self.stop[0],
|
||||
}
|
||||
|
||||
|
||||
class Agent(BaseSingleActionAgent):
|
||||
"""Class responsible for calling the language model and deciding the action.
|
||||
|
||||
This is driven by an LLMChain. The prompt in the LLMChain MUST include
|
||||
@ -35,7 +205,13 @@ class Agent(BaseModel):
|
||||
|
||||
llm_chain: LLMChain
|
||||
allowed_tools: Optional[List[str]] = None
|
||||
return_values: List[str] = ["output"]
|
||||
|
||||
def get_allowed_tools(self) -> Optional[List[str]]:
|
||||
return self.allowed_tools
|
||||
|
||||
@property
|
||||
def return_values(self) -> List[str]:
|
||||
return ["output"]
|
||||
|
||||
@abstractmethod
|
||||
def _extract_tool_and_input(self, text: str) -> Optional[Tuple[str, str]]:
|
||||
@ -248,55 +424,17 @@ class Agent(BaseModel):
|
||||
f"got {early_stopping_method}"
|
||||
)
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
def _agent_type(self) -> str:
|
||||
"""Return Identifier of agent type."""
|
||||
|
||||
def dict(self, **kwargs: Any) -> Dict:
|
||||
"""Return dictionary representation of agent."""
|
||||
_dict = super().dict()
|
||||
_dict["_type"] = self._agent_type
|
||||
return _dict
|
||||
|
||||
def save(self, file_path: Union[Path, str]) -> None:
|
||||
"""Save the agent.
|
||||
|
||||
Args:
|
||||
file_path: Path to file to save the agent to.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
# If working with agent executor
|
||||
agent.agent.save(file_path="path/agent.yaml")
|
||||
"""
|
||||
# Convert file to Path object.
|
||||
if isinstance(file_path, str):
|
||||
save_path = Path(file_path)
|
||||
else:
|
||||
save_path = file_path
|
||||
|
||||
directory_path = save_path.parent
|
||||
directory_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Fetch dictionary to save
|
||||
agent_dict = self.dict()
|
||||
|
||||
if save_path.suffix == ".json":
|
||||
with open(file_path, "w") as f:
|
||||
json.dump(agent_dict, f, indent=4)
|
||||
elif save_path.suffix == ".yaml":
|
||||
with open(file_path, "w") as f:
|
||||
yaml.dump(agent_dict, f, default_flow_style=False)
|
||||
else:
|
||||
raise ValueError(f"{save_path} must be json or yaml")
|
||||
def tool_run_logging_kwargs(self) -> Dict:
|
||||
return {
|
||||
"llm_prefix": self.llm_prefix,
|
||||
"observation_prefix": self.observation_prefix,
|
||||
}
|
||||
|
||||
|
||||
class AgentExecutor(Chain, BaseModel):
|
||||
"""Consists of an agent using tools."""
|
||||
|
||||
agent: Agent
|
||||
agent: BaseSingleActionAgent
|
||||
tools: Sequence[BaseTool]
|
||||
return_intermediate_steps: bool = False
|
||||
max_iterations: Optional[int] = 15
|
||||
@ -305,7 +443,7 @@ class AgentExecutor(Chain, BaseModel):
|
||||
@classmethod
|
||||
def from_agent_and_tools(
|
||||
cls,
|
||||
agent: Agent,
|
||||
agent: BaseSingleActionAgent,
|
||||
tools: Sequence[BaseTool],
|
||||
callback_manager: Optional[BaseCallbackManager] = None,
|
||||
**kwargs: Any,
|
||||
@ -320,10 +458,11 @@ class AgentExecutor(Chain, BaseModel):
|
||||
"""Validate that tools are compatible with agent."""
|
||||
agent = values["agent"]
|
||||
tools = values["tools"]
|
||||
if agent.allowed_tools is not None:
|
||||
if set(agent.allowed_tools) != set([tool.name for tool in tools]):
|
||||
allowed_tools = agent.get_allowed_tools()
|
||||
if allowed_tools is not None:
|
||||
if set(allowed_tools) != set([tool.name for tool in tools]):
|
||||
raise ValueError(
|
||||
f"Allowed tools ({agent.allowed_tools}) different than "
|
||||
f"Allowed tools ({allowed_tools}) different than "
|
||||
f"provided tools ({[tool.name for tool in tools]})"
|
||||
)
|
||||
return values
|
||||
@ -418,22 +557,17 @@ class AgentExecutor(Chain, BaseModel):
|
||||
tool = name_to_tool_map[output.tool]
|
||||
return_direct = tool.return_direct
|
||||
color = color_mapping[output.tool]
|
||||
llm_prefix = "" if return_direct else self.agent.llm_prefix
|
||||
tool_run_kwargs = self.agent.tool_run_logging_kwargs()
|
||||
if return_direct:
|
||||
tool_run_kwargs["llm_prefix"] = ""
|
||||
# We then call the tool on the tool input to get an observation
|
||||
observation = tool.run(
|
||||
output.tool_input,
|
||||
verbose=self.verbose,
|
||||
color=color,
|
||||
llm_prefix=llm_prefix,
|
||||
observation_prefix=self.agent.observation_prefix,
|
||||
output.tool_input, verbose=self.verbose, color=color, **tool_run_kwargs
|
||||
)
|
||||
else:
|
||||
tool_run_kwargs = self.agent.tool_run_logging_kwargs()
|
||||
observation = InvalidTool().run(
|
||||
output.tool,
|
||||
verbose=self.verbose,
|
||||
color=None,
|
||||
llm_prefix="",
|
||||
observation_prefix=self.agent.observation_prefix,
|
||||
output.tool, verbose=self.verbose, color=None, **tool_run_kwargs
|
||||
)
|
||||
return output, observation
|
||||
|
||||
@ -467,22 +601,17 @@ class AgentExecutor(Chain, BaseModel):
|
||||
tool = name_to_tool_map[output.tool]
|
||||
return_direct = tool.return_direct
|
||||
color = color_mapping[output.tool]
|
||||
llm_prefix = "" if return_direct else self.agent.llm_prefix
|
||||
tool_run_kwargs = self.agent.tool_run_logging_kwargs()
|
||||
if return_direct:
|
||||
tool_run_kwargs["llm_prefix"] = ""
|
||||
# We then call the tool on the tool input to get an observation
|
||||
observation = await tool.arun(
|
||||
output.tool_input,
|
||||
verbose=self.verbose,
|
||||
color=color,
|
||||
llm_prefix=llm_prefix,
|
||||
observation_prefix=self.agent.observation_prefix,
|
||||
output.tool_input, verbose=self.verbose, color=color, **tool_run_kwargs
|
||||
)
|
||||
else:
|
||||
tool_run_kwargs = self.agent.tool_run_logging_kwargs()
|
||||
observation = await InvalidTool().arun(
|
||||
output.tool,
|
||||
verbose=self.verbose,
|
||||
color=None,
|
||||
llm_prefix="",
|
||||
observation_prefix=self.agent.observation_prefix,
|
||||
output.tool, verbose=self.verbose, color=None, **tool_run_kwargs
|
||||
)
|
||||
return_direct = False
|
||||
return output, observation
|
||||
|
@ -74,9 +74,11 @@ class StdOutCallbackHandler(BaseCallbackHandler):
|
||||
**kwargs: Any,
|
||||
) -> None:
|
||||
"""If not the final action, print out observation."""
|
||||
print_text(f"\n{observation_prefix}")
|
||||
if observation_prefix:
|
||||
print_text(f"\n{observation_prefix}")
|
||||
print_text(output, color=color if color else self.color)
|
||||
print_text(f"\n{llm_prefix}")
|
||||
if llm_prefix:
|
||||
print_text(f"\n{llm_prefix}")
|
||||
|
||||
def on_tool_error(
|
||||
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
|
||||
|
@ -199,7 +199,7 @@ class Chain(BaseModel, ABC):
|
||||
"""Call the chain on all inputs in the list."""
|
||||
return [self(inputs) for inputs in input_list]
|
||||
|
||||
def run(self, *args: str, **kwargs: str) -> str:
|
||||
def run(self, *args: Any, **kwargs: Any) -> str:
|
||||
"""Run the chain as text in, text out or multiple variables, text out."""
|
||||
if len(self.output_keys) != 1:
|
||||
raise ValueError(
|
||||
@ -220,7 +220,7 @@ class Chain(BaseModel, ABC):
|
||||
f" but not both. Got args: {args} and kwargs: {kwargs}."
|
||||
)
|
||||
|
||||
async def arun(self, *args: str, **kwargs: str) -> str:
|
||||
async def arun(self, *args: Any, **kwargs: Any) -> str:
|
||||
"""Run the chain as text in, text out or multiple variables, text out."""
|
||||
if len(self.output_keys) != 1:
|
||||
raise ValueError(
|
||||
|
@ -144,9 +144,9 @@ class BasePromptTemplate(BaseModel, ABC):
|
||||
"""
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
def _prompt_type(self) -> str:
|
||||
"""Return the prompt type key."""
|
||||
raise NotImplementedError
|
||||
|
||||
def dict(self, **kwargs: Any) -> Dict:
|
||||
"""Return dictionary representation of prompt."""
|
||||
|
@ -149,7 +149,7 @@ def test_agent_with_callbacks_local() -> None:
|
||||
callback_manager=manager,
|
||||
)
|
||||
|
||||
agent.agent.llm_chain.verbose = True
|
||||
agent.agent.llm_chain.verbose = True # type: ignore
|
||||
|
||||
output = agent.run("when was langchain made")
|
||||
assert output == "curses foiled again"
|
||||
@ -285,8 +285,8 @@ def test_agent_with_new_prefix_suffix() -> None:
|
||||
)
|
||||
|
||||
# avoids "BasePromptTemplate" has no attribute "template" error
|
||||
assert hasattr(agent.agent.llm_chain.prompt, "template")
|
||||
prompt_str = agent.agent.llm_chain.prompt.template
|
||||
assert hasattr(agent.agent.llm_chain.prompt, "template") # type: ignore
|
||||
prompt_str = agent.agent.llm_chain.prompt.template # type: ignore
|
||||
assert prompt_str.startswith(prefix), "Prompt does not start with prefix"
|
||||
assert prompt_str.endswith(suffix), "Prompt does not end with suffix"
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user