mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
Add embaas document extraction api endpoints (#6048)
# Introduces embaas document extraction api endpoints In this PR, we add support for embaas document extraction endpoints to Text Embedding Models (with LLMs, in different PRs coming). We currently offer the MTEB leaderboard top performers, will continue to add top embedding models and soon add support for customers to deploy thier own models. Additional Documentation + Infomation can be found [here](https://embaas.io). While developing this integration, I closely followed the patterns established by other langchain integrations. Nonetheless, if there are any aspects that require adjustments or if there's a better way to present a new integration, let me know! :) Additionally, I fixed some docs in the embeddings integration. Related PR: #5976 #### Who can review? DataLoaders - @eyurtsev
This commit is contained in:
parent
2f0088039d
commit
5b6bbf4ab2
167
docs/modules/indexes/document_loaders/examples/embaas.ipynb
Normal file
167
docs/modules/indexes/document_loaders/examples/embaas.ipynb
Normal file
@ -0,0 +1,167 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"# Embaas\n",
|
||||
"[embaas](https://embaas.io) is a fully managed NLP API service that offers features like embedding generation, document text extraction, document to embeddings and more. You can choose a [variety of pre-trained models](https://embaas.io/docs/models/embeddings).\n",
|
||||
"\n",
|
||||
"### Prerequisites\n",
|
||||
"Create a free embaas account at [https://embaas.io/register](https://embaas.io/register) and generate an [API key](https://embaas.io/dashboard/api-keys)\n",
|
||||
"\n",
|
||||
"### Document Text Extraction API\n",
|
||||
"The document text extraction API allows you to extract the text from a given document. The API supports a variety of document formats, including PDF, mp3, mp4 and more. For a full list of supported formats, check out the API docs (link below)."
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Set API key\n",
|
||||
"embaas_api_key = \"YOUR_API_KEY\"\n",
|
||||
"# or set environment variable\n",
|
||||
"os.environ[\"EMBAAS_API_KEY\"] = \"YOUR_API_KEY\""
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"#### Using a blob (bytes)"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.document_loaders.embaas import EmbaasBlobLoader\n",
|
||||
"from langchain.document_loaders.blob_loaders import Blob"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"blob_loader = EmbaasBlobLoader()\n",
|
||||
"blob = Blob.from_path(\"example.pdf\")\n",
|
||||
"documents = blob_loader.load(blob)"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# You can also directly create embeddings with your preferred embeddings model\n",
|
||||
"blob_loader = EmbaasBlobLoader(params={\"model\": \"e5-large-v2\", \"should_embed\": True})\n",
|
||||
"blob = Blob.from_path(\"example.pdf\")\n",
|
||||
"documents = blob_loader.load(blob)\n",
|
||||
"\n",
|
||||
"print(documents[0][\"metadata\"][\"embedding\"])"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"ExecuteTime": {
|
||||
"start_time": "2023-06-12T22:19:48.366886Z",
|
||||
"end_time": "2023-06-12T22:19:48.380467Z"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"#### Using a file"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.document_loaders.embaas import EmbaasLoader"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"file_loader = EmbaasLoader(file_path=\"example.pdf\")\n",
|
||||
"documents = file_loader.load()"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Disable automatic text splitting\n",
|
||||
"file_loader = EmbaasLoader(file_path=\"example.mp3\", params={\"should_chunk\": False})\n",
|
||||
"documents = file_loader.load()"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"ExecuteTime": {
|
||||
"start_time": "2023-06-12T22:24:31.880857Z",
|
||||
"end_time": "2023-06-12T22:24:31.894665Z"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"For more detailed information about the embaas document text extraction API, please refer to [the official embaas API documentation](https://embaas.io/api-reference)."
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 2
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython2",
|
||||
"version": "2.7.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 0
|
||||
}
|
@ -31,6 +31,7 @@ from langchain.document_loaders.email import (
|
||||
OutlookMessageLoader,
|
||||
UnstructuredEmailLoader,
|
||||
)
|
||||
from langchain.document_loaders.embaas import EmbaasBlobLoader, EmbaasLoader
|
||||
from langchain.document_loaders.epub import UnstructuredEPubLoader
|
||||
from langchain.document_loaders.evernote import EverNoteLoader
|
||||
from langchain.document_loaders.excel import UnstructuredExcelLoader
|
||||
@ -250,4 +251,6 @@ __all__ = [
|
||||
"WikipediaLoader",
|
||||
"YoutubeLoader",
|
||||
"SnowflakeLoader",
|
||||
"EmbaasLoader",
|
||||
"EmbaasBlobLoader",
|
||||
]
|
||||
|
234
langchain/document_loaders/embaas.py
Normal file
234
langchain/document_loaders/embaas.py
Normal file
@ -0,0 +1,234 @@
|
||||
import base64
|
||||
import warnings
|
||||
from typing import Any, Dict, Iterator, List, Optional
|
||||
|
||||
import requests
|
||||
from pydantic import BaseModel, root_validator, validator
|
||||
from typing_extensions import NotRequired, TypedDict
|
||||
|
||||
from langchain.docstore.document import Document
|
||||
from langchain.document_loaders.base import BaseBlobParser, BaseLoader
|
||||
from langchain.document_loaders.blob_loaders import Blob
|
||||
from langchain.text_splitter import TextSplitter
|
||||
from langchain.utils import get_from_dict_or_env
|
||||
|
||||
EMBAAS_DOC_API_URL = "https://api.embaas.io/v1/document/extract-text/bytes/"
|
||||
|
||||
|
||||
class EmbaasDocumentExtractionParameters(TypedDict):
|
||||
"""Parameters for the embaas document extraction API."""
|
||||
|
||||
mime_type: NotRequired[str]
|
||||
"""The mime type of the document."""
|
||||
file_extension: NotRequired[str]
|
||||
"""The file extension of the document."""
|
||||
file_name: NotRequired[str]
|
||||
"""The file name of the document."""
|
||||
|
||||
should_chunk: NotRequired[bool]
|
||||
"""Whether to chunk the document into pages."""
|
||||
chunk_size: NotRequired[int]
|
||||
"""The maximum size of the text chunks."""
|
||||
chunk_overlap: NotRequired[int]
|
||||
"""The maximum overlap allowed between chunks."""
|
||||
chunk_splitter: NotRequired[str]
|
||||
"""The text splitter class name for creating chunks."""
|
||||
separators: NotRequired[List[str]]
|
||||
"""The separators for chunks."""
|
||||
|
||||
should_embed: NotRequired[bool]
|
||||
"""Whether to create embeddings for the document in the response."""
|
||||
model: NotRequired[str]
|
||||
"""The model to pass to the Embaas document extraction API."""
|
||||
instruction: NotRequired[str]
|
||||
"""The instruction to pass to the Embaas document extraction API."""
|
||||
|
||||
|
||||
class EmbaasDocumentExtractionPayload(EmbaasDocumentExtractionParameters):
|
||||
bytes: str
|
||||
"""The base64 encoded bytes of the document to extract text from."""
|
||||
|
||||
|
||||
class BaseEmbaasLoader(BaseModel):
|
||||
embaas_api_key: Optional[str] = None
|
||||
api_url: str = EMBAAS_DOC_API_URL
|
||||
"""The URL of the embaas document extraction API."""
|
||||
params: EmbaasDocumentExtractionParameters = EmbaasDocumentExtractionParameters()
|
||||
"""Additional parameters to pass to the embaas document extraction API."""
|
||||
|
||||
@root_validator(pre=True)
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
"""Validate that api key and python package exists in environment."""
|
||||
embaas_api_key = get_from_dict_or_env(
|
||||
values, "embaas_api_key", "EMBAAS_API_KEY"
|
||||
)
|
||||
values["embaas_api_key"] = embaas_api_key
|
||||
return values
|
||||
|
||||
|
||||
class EmbaasBlobLoader(BaseEmbaasLoader, BaseBlobParser):
|
||||
"""Wrapper around embaas's document byte loader service.
|
||||
|
||||
To use, you should have the
|
||||
environment variable ``EMBAAS_API_KEY`` set with your API key, or pass
|
||||
it as a named parameter to the constructor.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
# Default parsing
|
||||
from langchain.document_loaders.embaas import EmbaasBlobLoader
|
||||
loader = EmbaasBlobLoader()
|
||||
blob = Blob.from_path(path="example.mp3")
|
||||
documents = loader.parse(blob=blob)
|
||||
|
||||
# Custom api parameters (create embeddings automatically)
|
||||
from langchain.document_loaders.embaas import EmbaasBlobLoader
|
||||
loader = EmbaasBlobLoader(
|
||||
params={
|
||||
"should_embed": True,
|
||||
"model": "e5-large-v2",
|
||||
"chunk_size": 256,
|
||||
"chunk_splitter": "CharacterTextSplitter"
|
||||
}
|
||||
)
|
||||
blob = Blob.from_path(path="example.pdf")
|
||||
documents = loader.parse(blob=blob)
|
||||
"""
|
||||
|
||||
def lazy_parse(self, blob: Blob) -> Iterator[Document]:
|
||||
yield from self._get_documents(blob=blob)
|
||||
|
||||
@staticmethod
|
||||
def _api_response_to_documents(chunks: List[Dict[str, Any]]) -> List[Document]:
|
||||
"""Convert the API response to a list of documents."""
|
||||
docs = []
|
||||
for chunk in chunks:
|
||||
metadata = chunk["metadata"]
|
||||
if chunk.get("embedding", None) is not None:
|
||||
metadata["embedding"] = chunk["embedding"]
|
||||
doc = Document(page_content=chunk["text"], metadata=metadata)
|
||||
docs.append(doc)
|
||||
|
||||
return docs
|
||||
|
||||
def _generate_payload(self, blob: Blob) -> EmbaasDocumentExtractionPayload:
|
||||
"""Generates payload for the API request."""
|
||||
base64_byte_str = base64.b64encode(blob.as_bytes()).decode()
|
||||
payload: EmbaasDocumentExtractionPayload = EmbaasDocumentExtractionPayload(
|
||||
bytes=base64_byte_str,
|
||||
# Workaround for mypy issue: https://github.com/python/mypy/issues/9408
|
||||
# type: ignore
|
||||
**self.params,
|
||||
)
|
||||
|
||||
if blob.mimetype is not None and payload.get("mime_type", None) is None:
|
||||
payload["mime_type"] = blob.mimetype
|
||||
|
||||
return payload
|
||||
|
||||
def _handle_request(
|
||||
self, payload: EmbaasDocumentExtractionPayload
|
||||
) -> List[Document]:
|
||||
"""Sends a request to the embaas API and handles the response."""
|
||||
headers = {
|
||||
"Authorization": f"Bearer {self.embaas_api_key}",
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
|
||||
response = requests.post(self.api_url, headers=headers, json=payload)
|
||||
response.raise_for_status()
|
||||
|
||||
parsed_response = response.json()
|
||||
return EmbaasBlobLoader._api_response_to_documents(
|
||||
chunks=parsed_response["data"]["chunks"]
|
||||
)
|
||||
|
||||
def _get_documents(self, blob: Blob) -> Iterator[Document]:
|
||||
"""Get the documents from the blob."""
|
||||
payload = self._generate_payload(blob=blob)
|
||||
|
||||
try:
|
||||
documents = self._handle_request(payload=payload)
|
||||
except requests.exceptions.RequestException as e:
|
||||
if e.response is None or not e.response.text:
|
||||
raise ValueError(
|
||||
f"Error raised by embaas document text extraction API: {e}"
|
||||
)
|
||||
|
||||
parsed_response = e.response.json()
|
||||
if "message" in parsed_response:
|
||||
raise ValueError(
|
||||
f"Validation Error raised by embaas document text extraction API:"
|
||||
f" {parsed_response['message']}"
|
||||
)
|
||||
raise
|
||||
|
||||
yield from documents
|
||||
|
||||
|
||||
class EmbaasLoader(BaseEmbaasLoader, BaseLoader):
|
||||
"""Wrapper around embaas's document loader service.
|
||||
|
||||
To use, you should have the
|
||||
environment variable ``EMBAAS_API_KEY`` set with your API key, or pass
|
||||
it as a named parameter to the constructor.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
# Default parsing
|
||||
from langchain.document_loaders.embaas import EmbaasLoader
|
||||
loader = EmbaasLoader(file_path="example.mp3")
|
||||
documents = loader.load()
|
||||
|
||||
# Custom api parameters (create embeddings automatically)
|
||||
from langchain.document_loaders.embaas import EmbaasBlobLoader
|
||||
loader = EmbaasBlobLoader(
|
||||
file_path="example.pdf",
|
||||
params={
|
||||
"should_embed": True,
|
||||
"model": "e5-large-v2",
|
||||
"chunk_size": 256,
|
||||
"chunk_splitter": "CharacterTextSplitter"
|
||||
}
|
||||
)
|
||||
documents = loader.load()
|
||||
"""
|
||||
|
||||
file_path: str
|
||||
"""The path to the file to load."""
|
||||
blob_loader: Optional[EmbaasBlobLoader]
|
||||
"""The blob loader to use. If not provided, a default one will be created."""
|
||||
|
||||
@validator("blob_loader", always=True)
|
||||
def validate_blob_loader(
|
||||
cls, v: EmbaasBlobLoader, values: Dict
|
||||
) -> EmbaasBlobLoader:
|
||||
return v or EmbaasBlobLoader(
|
||||
embaas_api_key=values["embaas_api_key"],
|
||||
api_url=values["api_url"],
|
||||
params=values["params"],
|
||||
)
|
||||
|
||||
def lazy_load(self) -> Iterator[Document]:
|
||||
"""Load the documents from the file path lazily."""
|
||||
blob = Blob.from_path(path=self.file_path)
|
||||
|
||||
assert self.blob_loader is not None
|
||||
# Should never be None, but mypy doesn't know that.
|
||||
yield from self.blob_loader.lazy_parse(blob=blob)
|
||||
|
||||
def load(self) -> List[Document]:
|
||||
return list(self.lazy_load())
|
||||
|
||||
def load_and_split(
|
||||
self, text_splitter: Optional[TextSplitter] = None
|
||||
) -> List[Document]:
|
||||
if self.params.get("should_embed", False):
|
||||
warnings.warn(
|
||||
"Embeddings are not supported with load_and_split."
|
||||
" Use the API splitter to properly generate embeddings."
|
||||
" For more information see embaas.io docs."
|
||||
)
|
||||
return super().load_and_split(text_splitter=text_splitter)
|
@ -32,17 +32,16 @@ class EmbaasEmbeddings(BaseModel, Embeddings):
|
||||
.. code-block:: python
|
||||
|
||||
# Initialise with default model and instruction
|
||||
from langchain.llms import EmbaasEmbeddings
|
||||
from langchain.embeddings import EmbaasEmbeddings
|
||||
emb = EmbaasEmbeddings()
|
||||
|
||||
# Initialise with custom model and instruction
|
||||
from langchain.llms import EmbaasEmbeddings
|
||||
from langchain.embeddings import EmbaasEmbeddings
|
||||
emb_model = "instructor-large"
|
||||
emb_inst = "Represent the Wikipedia document for retrieval"
|
||||
emb = EmbaasEmbeddings(
|
||||
model=emb_model,
|
||||
instruction=emb_inst,
|
||||
embaas_api_key="your-api-key"
|
||||
instruction=emb_inst
|
||||
)
|
||||
"""
|
||||
|
||||
|
59
tests/integration_tests/document_loaders/test_embaas.py
Normal file
59
tests/integration_tests/document_loaders/test_embaas.py
Normal file
@ -0,0 +1,59 @@
|
||||
from typing import Any
|
||||
from unittest.mock import MagicMock, patch
|
||||
|
||||
import responses
|
||||
|
||||
from langchain.document_loaders import EmbaasBlobLoader, EmbaasLoader
|
||||
from langchain.document_loaders.blob_loaders import Blob
|
||||
from langchain.document_loaders.embaas import EMBAAS_DOC_API_URL
|
||||
|
||||
|
||||
@responses.activate
|
||||
def test_handle_request() -> None:
|
||||
responses.add(
|
||||
responses.POST,
|
||||
EMBAAS_DOC_API_URL,
|
||||
json={
|
||||
"data": {
|
||||
"chunks": [
|
||||
{
|
||||
"text": "Hello",
|
||||
"metadata": {"start_page": 1, "end_page": 2},
|
||||
"embeddings": [0.0],
|
||||
}
|
||||
]
|
||||
}
|
||||
},
|
||||
status=200,
|
||||
)
|
||||
|
||||
loader = EmbaasBlobLoader(embaas_api_key="api_key", params={"should_embed": True})
|
||||
documents = loader.parse(blob=Blob.from_data(data="Hello"))
|
||||
assert len(documents) == 1
|
||||
assert documents[0].page_content == "Hello"
|
||||
assert documents[0].metadata["start_page"] == 1
|
||||
assert documents[0].metadata["end_page"] == 2
|
||||
assert documents[0].metadata["embeddings"] == [0.0]
|
||||
|
||||
|
||||
@responses.activate
|
||||
def test_handle_request_exception() -> None:
|
||||
responses.add(
|
||||
responses.POST,
|
||||
EMBAAS_DOC_API_URL,
|
||||
json={"message": "Invalid request"},
|
||||
status=400,
|
||||
)
|
||||
loader = EmbaasBlobLoader(embaas_api_key="api_key")
|
||||
try:
|
||||
loader.parse(blob=Blob.from_data(data="Hello"))
|
||||
except Exception as e:
|
||||
assert "Invalid request" in str(e)
|
||||
|
||||
|
||||
@patch.object(EmbaasBlobLoader, "_handle_request")
|
||||
def test_load(mock_handle_request: Any) -> None:
|
||||
mock_handle_request.return_value = [MagicMock()]
|
||||
loader = EmbaasLoader(file_path="test_embaas.py", embaas_api_key="api_key")
|
||||
documents = loader.load()
|
||||
assert len(documents) == 1
|
Loading…
Reference in New Issue
Block a user