diff --git a/langchain/client/__init__.py b/langchain/client/__init__.py index bcab76f594..8b2638ca7c 100644 --- a/langchain/client/__init__.py +++ b/langchain/client/__init__.py @@ -1,9 +1,16 @@ """LangChain + Client.""" from langchain.client.runner_utils import ( + InputFormatError, arun_on_dataset, arun_on_examples, run_on_dataset, run_on_examples, ) -__all__ = ["arun_on_dataset", "run_on_dataset", "arun_on_examples", "run_on_examples"] +__all__ = [ + "InputFormatError", + "arun_on_dataset", + "run_on_dataset", + "arun_on_examples", + "run_on_examples", +] diff --git a/langchain/client/runner_utils.py b/langchain/client/runner_utils.py index 96cc0becac..383b076ce4 100644 --- a/langchain/client/runner_utils.py +++ b/langchain/client/runner_utils.py @@ -51,8 +51,7 @@ class InputFormatError(Exception): def _get_prompts(inputs: Dict[str, Any]) -> List[str]: - """ - Get prompts from inputs. + """Get prompts from inputs. Args: inputs: The input dictionary. @@ -99,8 +98,7 @@ def _get_prompts(inputs: Dict[str, Any]) -> List[str]: def _get_messages(inputs: Dict[str, Any]) -> List[List[BaseMessage]]: - """ - Get Chat Messages from inputs. + """Get Chat Messages from inputs. Args: inputs: The input dictionary. @@ -143,8 +141,7 @@ async def _arun_llm( callbacks: Callbacks = None, input_mapper: Optional[Callable[[Dict], Any]] = None, ) -> Union[LLMResult, ChatResult]: - """ - Asynchronously run the language model. + """Asynchronously run the language model. Args: llm: The language model to run. @@ -203,8 +200,7 @@ async def _arun_llm_or_chain( callbacks: Optional[List[BaseCallbackHandler]] = None, input_mapper: Optional[Callable[[Dict], Any]] = None, ) -> Union[List[dict], List[str], List[LLMResult], List[ChatResult]]: - """ - Asynchronously run the Chain or language model. + """Asynchronously run the Chain or language model. Args: example: The example to run. @@ -264,8 +260,7 @@ async def _gather_with_concurrency( [Sequence[BaseCallbackHandler], Dict], Coroutine[Any, Any, Any] ], ) -> List[Any]: - """ - Run coroutines with a concurrency limit. + """Run coroutines with a concurrency limit. Args: n: The maximum number of concurrent tasks. @@ -503,7 +498,8 @@ def run_llm_or_chain( callbacks: Optional callbacks to use during the run. Returns: - A list of outputs. + Union[List[dict], List[str], List[LLMResult], List[ChatResult]]: + The outputs of the model or chain. """ if callbacks: previous_example_ids = [ @@ -670,8 +666,8 @@ async def arun_on_dataset( project_name: Name of the project to store the traces in. Defaults to {dataset_name}-{chain class name}-{datetime}. verbose: Whether to print progress. - client: Client to use to read the dataset. If not provided, a new - client will be created using the credentials in the environment. + client: Client to use to read the dataset. If not provided, + a new client will be created using the credentials in the environment. tags: Tags to add to each run in the project. run_evaluators: Evaluators to run on the results of the chain. input_mapper: A function to map to the inputs dictionary from an Example @@ -725,15 +721,14 @@ def run_on_dataset( llm_or_chain_factory: Language model or Chain constructor to run over the dataset. The Chain constructor is used to permit independent calls on each example without carrying over state. - concurrency_level: Number of async workers to run in parallel. num_repetitions: Number of times to run the model on each example. This is useful when testing success rates or generating confidence intervals. project_name: Name of the project to store the traces in. Defaults to {dataset_name}-{chain class name}-{datetime}. verbose: Whether to print progress. - client: Client to use to access the dataset. If None, a new client - will be created using the credentials in the environment. + client: Client to use to access the dataset. If None, + a new client will be created using the credentials in the environment. tags: Tags to add to each run in the project. run_evaluators: Evaluators to run on the results of the chain. input_mapper: A function to map to the inputs dictionary from an Example diff --git a/langchain/docstore/arbitrary_fn.py b/langchain/docstore/arbitrary_fn.py index f062f6eca8..346e9ff6d6 100644 --- a/langchain/docstore/arbitrary_fn.py +++ b/langchain/docstore/arbitrary_fn.py @@ -5,8 +5,7 @@ from langchain.schema import Document class DocstoreFn(Docstore): - """ - Langchain Docstore via arbitrary lookup function. + """Langchain Docstore via arbitrary lookup function. This is useful when: * it's expensive to construct an InMemoryDocstore/dict @@ -21,6 +20,14 @@ class DocstoreFn(Docstore): self._lookup_fn = lookup_fn def search(self, search: str) -> Document: + """Search for a document. + + Args: + search: search string + + Returns: + Document if found, else error message. + """ r = self._lookup_fn(search) if isinstance(r, str): # NOTE: assume the search string is the source ID diff --git a/langchain/docstore/in_memory.py b/langchain/docstore/in_memory.py index d60efe277a..96b8a52ffa 100644 --- a/langchain/docstore/in_memory.py +++ b/langchain/docstore/in_memory.py @@ -13,14 +13,28 @@ class InMemoryDocstore(Docstore, AddableMixin): self._dict = _dict if _dict is not None else {} def add(self, texts: Dict[str, Document]) -> None: - """Add texts to in memory dictionary.""" + """Add texts to in memory dictionary. + + Args: + texts: dictionary of id -> document. + + Returns: + None + """ overlapping = set(texts).intersection(self._dict) if overlapping: raise ValueError(f"Tried to add ids that already exist: {overlapping}") self._dict = {**self._dict, **texts} def search(self, search: str) -> Union[str, Document]: - """Search via direct lookup.""" + """Search via direct lookup. + + Args: + search: id of a document to search for. + + Returns: + Document if found, else error message. + """ if search not in self._dict: return f"ID {search} not found." else: diff --git a/langchain/docstore/wikipedia.py b/langchain/docstore/wikipedia.py index 60fbed9a1c..85d160a015 100644 --- a/langchain/docstore/wikipedia.py +++ b/langchain/docstore/wikipedia.py @@ -25,6 +25,11 @@ class Wikipedia(Docstore): If page exists, return the page summary, and a PageWithLookups object. If page does not exist, return similar entries. + + Args: + search: search string. + + Returns: a Document object or error message. """ import wikipedia