Harrison/unstructured support (#903)

This commit is contained in:
Harrison Chase 2023-02-05 23:02:07 -08:00 committed by GitHub
parent 2a68be3e8d
commit 53d56d7650
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
16 changed files with 555 additions and 0 deletions

View File

@ -0,0 +1,29 @@
Document Loaders
==========================
Combining language models with your own text data is a powerful way to differentiate them.
The first step in doing this is to load the data into "documents" - a fancy way of say some pieces of text.
This module is aimed at making this easy.
A primary driver of a lot of this is the `Unstructured <https://github.com/Unstructured-IO/unstructured>`_ python package.
This package is a great way to transform all types of files - text, powerpoint, images, html, pdf, etc - into text data.
For detailed instructions on how to get set up with Unstructured, see installation guidelines `here <https://github.com/Unstructured-IO/unstructured#coffee-getting-started>`_.
The following sections of documentation are provided:
- `Key Concepts <./document_loaders/key_concepts.html>`_: A conceptual guide going over the various concepts related to loading documents.
- `How-To Guides <./document_loaders/how_to_guides.html>`_: A collection of how-to guides. These highlight different types of loaders.
.. toctree::
:maxdepth: 1
:caption: Document Loaders
:name: Document Loaders
:hidden:
./document_loaders/key_concepts.md
./document_loaders/how_to_guides.rst

View File

@ -0,0 +1,101 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "79f24a6b",
"metadata": {},
"source": [
"# Directory Loader\n",
"This covers how to use the DirectoryLoader to load all documents in a directory. Under the hood, this uses the [UnstructuredLoader](./unstructured_file.ipynb)"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "019d8520",
"metadata": {},
"outputs": [],
"source": [
"from langchain.document_loaders import DirectoryLoader"
]
},
{
"cell_type": "markdown",
"id": "0c76cdc5",
"metadata": {},
"source": [
"We can use the `glob` parameter to control which files to load. Note that here it doesn't load the `.rst` file or the `.ipynb` files."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "891fe56f",
"metadata": {},
"outputs": [],
"source": [
"loader = DirectoryLoader('../', glob=\"**/*.md\")"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "addfe9cf",
"metadata": {},
"outputs": [],
"source": [
"docs = loader.load()"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "b042086d",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(docs)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cbc8256b",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 23 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 590 KiB

View File

@ -0,0 +1,86 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "1dc7df1d",
"metadata": {},
"source": [
"# Notion\n",
"This notebook covers how to load documents from a Notion database dump.\n",
"\n",
"In order to get this notion dump, follow these instructions:\n",
"\n",
"## 🧑 Instructions for ingesting your own dataset\n",
"\n",
"Export your dataset from Notion. You can do this by clicking on the three dots in the upper right hand corner and then clicking `Export`.\n",
"\n",
"<img src=\"export_notion.png\" alt=\"export\" width=\"200\"/>\n",
"\n",
"When exporting, make sure to select the `Markdown & CSV` format option.\n",
"\n",
"<img src=\"export_format.png\" alt=\"export-format\" width=\"200\"/>\n",
"\n",
"This will produce a `.zip` file in your Downloads folder. Move the `.zip` file into this repository.\n",
"\n",
"Run the following command to unzip the zip file (replace the `Export...` with your own file name as needed).\n",
"\n",
"```shell\n",
"unzip Export-d3adfe0f-3131-4bf3-8987-a52017fc1bae.zip -d Notion_DB\n",
"```\n",
"\n",
"Run the following command to ingest the data."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "007c5cbf",
"metadata": {},
"outputs": [],
"source": [
"from langchain.document_loaders import NotionDirectoryLoader"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a1caec59",
"metadata": {},
"outputs": [],
"source": [
"loader = NotionDirectoryLoader(\"Notion_DB\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b1c30ff7",
"metadata": {},
"outputs": [],
"source": [
"docs = loader.load()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -0,0 +1,78 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "17812129",
"metadata": {},
"source": [
"# ReadTheDocs Documentation\n",
"This notebook covers how to load content from html that was generated as part of a Read-The-Docs build.\n",
"\n",
"For an example of this in the wild, see [here](https://github.com/hwchase17/chat-langchain).\n",
"\n",
"This assumes that the html has already been scraped into a folder. This can be done by uncommenting and running the following command"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "84696e27",
"metadata": {},
"outputs": [],
"source": [
"#!wget -r -A.html -P rtdocs https://langchain.readthedocs.io/en/latest/"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "92dd950b",
"metadata": {},
"outputs": [],
"source": [
"from langchain.document_loaders import ReadTheDocsLoader"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "494567c3",
"metadata": {},
"outputs": [],
"source": [
"loader = ReadTheDocsLoader(\"rtdocs\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e2e6d6f0",
"metadata": {},
"outputs": [],
"source": [
"docs = loader.load()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -0,0 +1,72 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "20deed05",
"metadata": {},
"source": [
"# Unstructured File Loader\n",
"This notebook covers how to use Unstructured to load files of many types. Unstructured currently supports loading of text files, powerpoints, html, pdfs, images, and more."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "79d3e549",
"metadata": {},
"outputs": [],
"source": [
"from langchain.document_loaders import UnstructuredFileLoader"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "2593d1dc",
"metadata": {},
"outputs": [],
"source": [
"loader = UnstructuredFileLoader(\"../../state_of_the_union.txt\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "fe34e941",
"metadata": {},
"outputs": [],
"source": [
"docs = loader.load()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "24e577e5",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -0,0 +1,19 @@
How To Guides
====================================
There are a lot of different document loaders that LangChain supports. Below are how-to guides for working with them
`File Loader <./examples/unstructured_file.html>`_: A walkthrough of how to use Unstructured to load files of arbitrary types (pdfs, txt, html, etc).
`Directory Loader <./examples/directory_loader.html>`_: A walkthrough of how to use Unstructured load files from a given directory.
`Notion <./examples/notion.html>`_: A walkthrough of how to load data for an arbitrary Notion DB.
`ReadTheDocs <./examples/readthedocs_documentation.html>`_: A walkthrough of how to load data for documentation generated by ReadTheDocs.
.. toctree::
:maxdepth: 1
:glob:
:hidden:
examples/*

View File

@ -0,0 +1,12 @@
# Key Concepts
## Document
This class is a container for document information. This contains two parts:
- `page_content`: The content of the actual page itself.
- `metadata`: The metadata associated with the document. This can be things like the file path, the url, etc.
## Loader
This base class is a way to load documents. It exposes a `load` method that returns `Document` objects.
## [Unstructured](https://github.com/Unstructured-IO/unstructured)
Unstructured is a python package specifically focused on transformations from raw documents to text.

View File

@ -0,0 +1,13 @@
"""All different types of document loaders."""
from langchain.document_loaders.directory import DirectoryLoader
from langchain.document_loaders.notion import NotionDirectoryLoader
from langchain.document_loaders.readthedocs import ReadTheDocsLoader
from langchain.document_loaders.unstructured import UnstructuredFileLoader
__all__ = [
"UnstructuredFileLoader",
"DirectoryLoader",
"NotionDirectoryLoader",
"ReadTheDocsLoader",
]

View File

@ -0,0 +1,26 @@
"""Base loader class."""
from abc import ABC, abstractmethod
from typing import List, Optional
from langchain.docstore.document import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter, TextSplitter
class BaseLoader(ABC):
"""Base loader class."""
@abstractmethod
def load(self) -> List[Document]:
"""Load data into document objects."""
def load_and_split(
self, text_splitter: Optional[TextSplitter] = None
) -> List[Document]:
"""Load documents and split into chunks."""
if text_splitter is None:
_text_splitter: TextSplitter = RecursiveCharacterTextSplitter()
else:
_text_splitter = text_splitter
docs = self.load()
return _text_splitter.split_documents(docs)

View File

@ -0,0 +1,26 @@
"""Loading logic for loading documents from a directory."""
from pathlib import Path
from typing import List
from langchain.docstore.document import Document
from langchain.document_loaders.base import BaseLoader
from langchain.document_loaders.unstructured import UnstructuredFileLoader
class DirectoryLoader(BaseLoader):
"""Loading logic for loading documents from a directory."""
def __init__(self, path: str, glob: str = "**/*"):
"""Initialize with path to directory and how to glob over it."""
self.path = path
self.glob = glob
def load(self) -> List[Document]:
"""Load documents."""
p = Path(self.path)
docs = []
for i in p.glob(self.glob):
if i.is_file():
sub_docs = UnstructuredFileLoader(str(i)).load()
docs.extend(sub_docs)
return docs

View File

@ -0,0 +1,25 @@
"""Loader that loads Notion directory dump."""
from pathlib import Path
from typing import List
from langchain.docstore.document import Document
from langchain.document_loaders.base import BaseLoader
class NotionDirectoryLoader(BaseLoader):
"""Loader that loads Notion directory dump."""
def __init__(self, path: str):
"""Initialize with path."""
self.file_path = path
def load(self) -> List[Document]:
"""Load documents."""
ps = list(Path(self.file_path).glob("**/*.md"))
docs = []
for p in ps:
with open(p) as f:
text = f.read()
metadata = {"source": str(p)}
docs.append(Document(page_content=text, metadata=metadata))
return docs

View File

@ -0,0 +1,33 @@
"""Loader that loads ReadTheDocs documentation directory dump."""
from pathlib import Path
from typing import List
from langchain.docstore.document import Document
from langchain.document_loaders.base import BaseLoader
class ReadTheDocsLoader(BaseLoader):
"""Loader that loads ReadTheDocs documentation directory dump."""
def __init__(self, path: str):
"""Initialize path."""
self.file_path = path
def load(self) -> List[Document]:
"""Load documents."""
from bs4 import BeautifulSoup
def _clean_data(data: str) -> str:
soup = BeautifulSoup(data)
text = soup.find_all("main", {"id": "main-content"})[0].get_text()
return "\n".join([t for t in text.split("\n") if t])
docs = []
for p in Path(self.file_path).rglob("*"):
if p.is_dir():
continue
with open(p) as f:
text = _clean_data(f.read())
metadata = {"source": str(p)}
docs.append(Document(page_content=text, metadata=metadata))
return docs

View File

@ -0,0 +1,29 @@
"""Loader that uses unstructured to load files."""
from typing import List
from langchain.docstore.document import Document
from langchain.document_loaders.base import BaseLoader
class UnstructuredFileLoader(BaseLoader):
"""Loader that uses unstructured to load files."""
def __init__(self, file_path: str):
"""Initialize with file path."""
try:
import unstructured # noqa:F401
except ImportError:
raise ValueError(
"unstructured package not found, please install it with "
"`pip install unstructured`"
)
self.file_path = file_path
def load(self) -> List[Document]:
"""Load file."""
from unstructured.partition.auto import partition
elements = partition(filename=self.file_path)
text = "\n\n".join([str(el) for el in elements])
metadata = {"source": self.file_path}
return [Document(page_content=text, metadata=metadata)]

View File

@ -44,6 +44,12 @@ class TextSplitter(ABC):
documents.append(Document(page_content=chunk, metadata=_metadatas[i]))
return documents
def split_documents(self, documents: List[Document]) -> List[Document]:
"""Split documents."""
texts = [doc.page_content for doc in documents]
metadatas = [doc.metadata for doc in documents]
return self.create_documents(texts, metadatas)
def _join_docs(self, docs: List[str], separator: str) -> Optional[str]:
text = separator.join(docs)
text = text.strip()