mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
anthropic docs: deprecated LLM, add chat model (#3549)
This commit is contained in:
parent
628e93a9a0
commit
52d95ec47d
179
docs/modules/models/chat/integrations/anthropic.ipynb
Normal file
179
docs/modules/models/chat/integrations/anthropic.ipynb
Normal file
@ -0,0 +1,179 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "bf733a38-db84-4363-89e2-de6735c37230",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"# Anthropic\n",
|
||||||
|
"\n",
|
||||||
|
"This notebook covers how to get started with Anthropic chat models."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 1,
|
||||||
|
"id": "d4a7c55d-b235-4ca4-a579-c90cc9570da9",
|
||||||
|
"metadata": {
|
||||||
|
"tags": []
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from langchain.chat_models import ChatAnthropic\n",
|
||||||
|
"from langchain.prompts.chat import (\n",
|
||||||
|
" ChatPromptTemplate,\n",
|
||||||
|
" SystemMessagePromptTemplate,\n",
|
||||||
|
" AIMessagePromptTemplate,\n",
|
||||||
|
" HumanMessagePromptTemplate,\n",
|
||||||
|
")\n",
|
||||||
|
"from langchain.schema import (\n",
|
||||||
|
" AIMessage,\n",
|
||||||
|
" HumanMessage,\n",
|
||||||
|
" SystemMessage\n",
|
||||||
|
")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 2,
|
||||||
|
"id": "70cf04e8-423a-4ff6-8b09-f11fb711c817",
|
||||||
|
"metadata": {
|
||||||
|
"tags": []
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"chat = ChatAnthropic()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 3,
|
||||||
|
"id": "8199ef8f-eb8b-4253-9ea0-6c24a013ca4c",
|
||||||
|
"metadata": {
|
||||||
|
"tags": []
|
||||||
|
},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"AIMessage(content=\" J'aime programmer. \", additional_kwargs={})"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 3,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"messages = [\n",
|
||||||
|
" HumanMessage(content=\"Translate this sentence from English to French. I love programming.\")\n",
|
||||||
|
"]\n",
|
||||||
|
"chat(messages)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "c361ab1e-8c0c-4206-9e3c-9d1424a12b9c",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## `ChatAnthropic` also supports async and streaming functionality:"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 4,
|
||||||
|
"id": "93a21c5c-6ef9-4688-be60-b2e1f94842fb",
|
||||||
|
"metadata": {
|
||||||
|
"tags": []
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from langchain.callbacks.base import CallbackManager\n",
|
||||||
|
"from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 5,
|
||||||
|
"id": "c5fac0e9-05a4-4fc1-a3b3-e5bbb24b971b",
|
||||||
|
"metadata": {
|
||||||
|
"tags": []
|
||||||
|
},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"LLMResult(generations=[[ChatGeneration(text=\" J'aime la programmation.\", generation_info=None, message=AIMessage(content=\" J'aime la programmation.\", additional_kwargs={}))]], llm_output={})"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 5,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"await chat.agenerate([messages])"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 6,
|
||||||
|
"id": "025be980-e50d-4a68-93dc-c9c7b500ce34",
|
||||||
|
"metadata": {
|
||||||
|
"tags": []
|
||||||
|
},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
" J'adore programmer."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"AIMessage(content=\" J'adore programmer.\", additional_kwargs={})"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 6,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"chat = ChatAnthropic(streaming=True, verbose=True, callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]))\n",
|
||||||
|
"chat(messages)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "df45f59f",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": []
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3 (ipykernel)",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.9.1"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 5
|
||||||
|
}
|
@ -1,146 +0,0 @@
|
|||||||
{
|
|
||||||
"cells": [
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"id": "9597802c",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"# Anthropic\n",
|
|
||||||
"\n",
|
|
||||||
"[Anthropic](https://console.anthropic.com/docs) is creator of the `Claude` LLM.\n",
|
|
||||||
"\n",
|
|
||||||
"This example goes over how to use LangChain to interact with Anthropic models."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "e55c0f2e-63e1-4e83-ac44-ffcc1dfeacc8",
|
|
||||||
"metadata": {
|
|
||||||
"tags": []
|
|
||||||
},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"# Install the package\n",
|
|
||||||
"!pip install anthropic"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "cec62d45-afa2-422a-95ef-57f8ab41a6f9",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"# get a new token: https://www.anthropic.com/earlyaccess\n",
|
|
||||||
"\n",
|
|
||||||
"from getpass import getpass\n",
|
|
||||||
"\n",
|
|
||||||
"ANTHROPIC_API_KEY = getpass()"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 1,
|
|
||||||
"id": "6fb585dd",
|
|
||||||
"metadata": {
|
|
||||||
"tags": []
|
|
||||||
},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"from langchain.llms import Anthropic\n",
|
|
||||||
"from langchain import PromptTemplate, LLMChain"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 2,
|
|
||||||
"id": "035dea0f",
|
|
||||||
"metadata": {
|
|
||||||
"tags": []
|
|
||||||
},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"template = \"\"\"Question: {question}\n",
|
|
||||||
"\n",
|
|
||||||
"Answer: Let's think step by step.\"\"\"\n",
|
|
||||||
"\n",
|
|
||||||
"prompt = PromptTemplate(template=template, input_variables=[\"question\"])"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "3f3458d9",
|
|
||||||
"metadata": {
|
|
||||||
"tags": []
|
|
||||||
},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"llm = Anthropic(anthropic_api_key=ANTHROPIC_API_KEY)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 4,
|
|
||||||
"id": "a641dbd9",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"llm_chain = LLMChain(prompt=prompt, llm=llm)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 5,
|
|
||||||
"id": "9f844993",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [
|
|
||||||
{
|
|
||||||
"data": {
|
|
||||||
"text/plain": [
|
|
||||||
"\" Step 1: Justin Beiber was born on March 1, 1994\\nStep 2: The NFL season ends with the Super Bowl in January/February\\nStep 3: Therefore, the Super Bowl that occurred closest to Justin Beiber's birth would be Super Bowl XXIX in 1995\\nStep 4: The San Francisco 49ers won Super Bowl XXIX in 1995\\n\\nTherefore, the answer is the San Francisco 49ers won the Super Bowl in the year Justin Beiber was born.\""
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"execution_count": 5,
|
|
||||||
"metadata": {},
|
|
||||||
"output_type": "execute_result"
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"source": [
|
|
||||||
"question = \"What NFL team won the Super Bowl in the year Justin Beiber was born?\"\n",
|
|
||||||
"\n",
|
|
||||||
"llm_chain.run(question)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "4797d719",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": []
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"metadata": {
|
|
||||||
"kernelspec": {
|
|
||||||
"display_name": "Python 3 (ipykernel)",
|
|
||||||
"language": "python",
|
|
||||||
"name": "python3"
|
|
||||||
},
|
|
||||||
"language_info": {
|
|
||||||
"codemirror_mode": {
|
|
||||||
"name": "ipython",
|
|
||||||
"version": 3
|
|
||||||
},
|
|
||||||
"file_extension": ".py",
|
|
||||||
"mimetype": "text/x-python",
|
|
||||||
"name": "python",
|
|
||||||
"nbconvert_exporter": "python",
|
|
||||||
"pygments_lexer": "ipython3",
|
|
||||||
"version": "3.10.6"
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"nbformat": 4,
|
|
||||||
"nbformat_minor": 5
|
|
||||||
}
|
|
@ -1,5 +1,6 @@
|
|||||||
"""Wrapper around Anthropic APIs."""
|
"""Wrapper around Anthropic APIs."""
|
||||||
import re
|
import re
|
||||||
|
import warnings
|
||||||
from typing import Any, Callable, Dict, Generator, List, Mapping, Optional, Tuple, Union
|
from typing import Any, Callable, Dict, Generator, List, Mapping, Optional, Tuple, Union
|
||||||
|
|
||||||
from pydantic import BaseModel, Extra, root_validator
|
from pydantic import BaseModel, Extra, root_validator
|
||||||
@ -123,6 +124,15 @@ class Anthropic(LLM, _AnthropicCommon):
|
|||||||
response = model(prompt)
|
response = model(prompt)
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
@root_validator()
|
||||||
|
def raise_warning(cls, values: Dict) -> Dict:
|
||||||
|
"""Raise warning that this class is deprecated."""
|
||||||
|
warnings.warn(
|
||||||
|
"This Anthropic LLM is deprecated. "
|
||||||
|
"Please use `from langchain.chat_models import ChatAnthropic` instead"
|
||||||
|
)
|
||||||
|
return values
|
||||||
|
|
||||||
class Config:
|
class Config:
|
||||||
"""Configuration for this pydantic object."""
|
"""Configuration for this pydantic object."""
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user