mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
feat: add redisearch vectorstore (#1307)
# Description Add `RediSearch` vectorstore for LangChain RediSearch: [RediSearch quick start](https://redis.io/docs/stack/search/quick_start/) # How to use ``` from langchain.vectorstores.redisearch import RediSearch rds = RediSearch.from_documents(docs, embeddings,redisearch_url="redis://localhost:6379") ```
This commit is contained in:
parent
e5c1659864
commit
4e13cef05a
204
docs/modules/indexes/vectorstore_examples/redis.ipynb
Normal file
204
docs/modules/indexes/vectorstore_examples/redis.ipynb
Normal file
@ -0,0 +1,204 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"# Redis\n",
|
||||
"\n",
|
||||
"This notebook shows how to use functionality related to the Redis database."
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%% md\n"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
|
||||
"from langchain.text_splitter import CharacterTextSplitter\n",
|
||||
"from langchain.vectorstores.redis import Redis"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.document_loaders import TextLoader\n",
|
||||
"loader = TextLoader('../../state_of_the_union.txt')\n",
|
||||
"documents = loader.load()\n",
|
||||
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
|
||||
"docs = text_splitter.split_documents(documents)\n",
|
||||
"\n",
|
||||
"embeddings = OpenAIEmbeddings()"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"rds = Redis.from_documents(docs, embeddings,redis_url=\"redis://localhost:6379\")"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": "'b564189668a343648996bd5a1d353d4e'"
|
||||
},
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"rds.index_name"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"In state after state, new laws have been passed, not only to suppress the vote, but to subvert entire elections. \n",
|
||||
"\n",
|
||||
"We cannot let this happen. \n",
|
||||
"\n",
|
||||
"Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. \n",
|
||||
"\n",
|
||||
"Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n",
|
||||
"\n",
|
||||
"One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n",
|
||||
"\n",
|
||||
"And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
|
||||
"results = rds.similarity_search(query)\n",
|
||||
"print(results[0].page_content)"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"['doc:333eadf75bd74be393acafa8bca48669']\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"print(rds.add_texts([\"Ankush went to Princeton\"]))"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Ankush went to Princeton\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"query = \"Princeton\"\n",
|
||||
"results = rds.similarity_search(query)\n",
|
||||
"print(results[0].page_content)"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"outputs": [],
|
||||
"source": [],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
}
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 2
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython2",
|
||||
"version": "2.7.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 0
|
||||
}
|
227
langchain/vectorstores/redis.py
Normal file
227
langchain/vectorstores/redis.py
Normal file
@ -0,0 +1,227 @@
|
||||
"""Wrapper around Redis vector database."""
|
||||
from __future__ import annotations
|
||||
|
||||
import json
|
||||
import uuid
|
||||
from typing import Any, Callable, Iterable, List, Mapping, Optional
|
||||
|
||||
import numpy as np
|
||||
from redis.client import Redis as RedisType
|
||||
|
||||
from langchain.docstore.document import Document
|
||||
from langchain.embeddings.base import Embeddings
|
||||
from langchain.utils import get_from_dict_or_env
|
||||
from langchain.vectorstores.base import VectorStore
|
||||
|
||||
|
||||
def _check_redis_module_exist(client: RedisType, module: str) -> bool:
|
||||
return module in [m["name"] for m in client.info().get("modules", {"name": ""})]
|
||||
|
||||
|
||||
class Redis(VectorStore):
|
||||
def __init__(
|
||||
self,
|
||||
redis_url: str,
|
||||
index_name: str,
|
||||
embedding_function: Callable,
|
||||
**kwargs: Any,
|
||||
):
|
||||
"""Initialize with necessary components."""
|
||||
try:
|
||||
import redis
|
||||
except ImportError:
|
||||
raise ValueError(
|
||||
"Could not import redis python package. "
|
||||
"Please install it with `pip install redis`."
|
||||
)
|
||||
|
||||
self.embedding_function = embedding_function
|
||||
self.index_name = index_name
|
||||
try:
|
||||
redis_client = redis.from_url(redis_url, **kwargs)
|
||||
except ValueError as e:
|
||||
raise ValueError(f"Your redis connected error: {e}")
|
||||
|
||||
# check if redis add redisearch module
|
||||
if not _check_redis_module_exist(redis_client, "search"):
|
||||
raise ValueError(
|
||||
"Could not use redis directly, you need to add search module"
|
||||
"Please refer [RediSearch](https://redis.io/docs/stack/search/quick_start/)" # noqa
|
||||
)
|
||||
|
||||
self.client = redis_client
|
||||
|
||||
def add_texts(
|
||||
self,
|
||||
texts: Iterable[str],
|
||||
metadatas: Optional[List[dict]] = None,
|
||||
**kwargs: Any,
|
||||
) -> List[str]:
|
||||
# `prefix`: Maybe in the future we can let the user choose the index_name.
|
||||
prefix = "doc" # prefix for the document keys
|
||||
|
||||
ids = []
|
||||
# Check if index exists
|
||||
for i, text in enumerate(texts):
|
||||
key = f"{prefix}:{uuid.uuid4().hex}"
|
||||
metadata = metadatas[i] if metadatas else {}
|
||||
self.client.hset(
|
||||
key,
|
||||
mapping={
|
||||
"content": text,
|
||||
"content_vector": np.array(
|
||||
self.embedding_function(text), dtype=np.float32
|
||||
).tobytes(),
|
||||
"metadata": json.dumps(metadata),
|
||||
},
|
||||
)
|
||||
ids.append(key)
|
||||
return ids
|
||||
|
||||
def similarity_search(
|
||||
self, query: str, k: int = 4, **kwargs: Any
|
||||
) -> List[Document]:
|
||||
try:
|
||||
from redis.commands.search.query import Query
|
||||
except ImportError:
|
||||
raise ValueError(
|
||||
"Could not import redis python package. "
|
||||
"Please install it with `pip install redis`."
|
||||
)
|
||||
|
||||
# Creates embedding vector from user query
|
||||
embedding = self.embedding_function(query)
|
||||
|
||||
# Prepare the Query
|
||||
return_fields = ["metadata", "content", "vector_score"]
|
||||
vector_field = "content_vector"
|
||||
hybrid_fields = "*"
|
||||
base_query = (
|
||||
f"{hybrid_fields}=>[KNN {k} @{vector_field} $vector AS vector_score]"
|
||||
)
|
||||
redis_query = (
|
||||
Query(base_query)
|
||||
.return_fields(*return_fields)
|
||||
.sort_by("vector_score")
|
||||
.paging(0, k)
|
||||
.dialect(2)
|
||||
)
|
||||
params_dict: Mapping[str, str] = {
|
||||
"vector": np.array(embedding) # type: ignore
|
||||
.astype(dtype=np.float32)
|
||||
.tobytes()
|
||||
}
|
||||
|
||||
# perform vector search
|
||||
results = self.client.ft(self.index_name).search(redis_query, params_dict)
|
||||
|
||||
documents = [
|
||||
Document(page_content=result.content, metadata=json.loads(result.metadata))
|
||||
for result in results.docs
|
||||
]
|
||||
|
||||
return documents
|
||||
|
||||
@classmethod
|
||||
def from_texts(
|
||||
cls,
|
||||
texts: List[str],
|
||||
embedding: Embeddings,
|
||||
metadatas: Optional[List[dict]] = None,
|
||||
index_name: Optional[str] = None,
|
||||
**kwargs: Any,
|
||||
) -> Redis:
|
||||
"""Construct RediSearch wrapper from raw documents.
|
||||
This is a user-friendly interface that:
|
||||
1. Embeds documents.
|
||||
2. Creates a new index for the embeddings in the RediSearch instance.
|
||||
3. Adds the documents to the newly created RediSearch index.
|
||||
This is intended to be a quick way to get started.
|
||||
Example:
|
||||
.. code-block:: python
|
||||
from langchain import RediSearch
|
||||
from langchain.embeddings import OpenAIEmbeddings
|
||||
embeddings = OpenAIEmbeddings()
|
||||
redisearch = RediSearch.from_texts(
|
||||
texts,
|
||||
embeddings,
|
||||
redis_url="redis://username:password@localhost:6379"
|
||||
)
|
||||
"""
|
||||
redis_url = get_from_dict_or_env(kwargs, "redis_url", "REDIS_URL")
|
||||
try:
|
||||
import redis
|
||||
from redis.commands.search.field import TextField, VectorField
|
||||
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
|
||||
except ImportError:
|
||||
raise ValueError(
|
||||
"Could not import redis python package. "
|
||||
"Please install it with `pip install redis`."
|
||||
)
|
||||
try:
|
||||
# We need to first remove redis_url from kwargs,
|
||||
# otherwise passing it to Redis will result in an error.
|
||||
kwargs.pop("redis_url")
|
||||
client = redis.from_url(url=redis_url, **kwargs)
|
||||
except ValueError as e:
|
||||
raise ValueError(f"Your redis connected error: {e}")
|
||||
|
||||
# check if redis add redisearch module
|
||||
if not _check_redis_module_exist(client, "search"):
|
||||
raise ValueError(
|
||||
"Could not use redis directly, you need to add search module"
|
||||
"Please refer [RediSearch](https://redis.io/docs/stack/search/quick_start/)" # noqa
|
||||
)
|
||||
|
||||
embeddings = embedding.embed_documents(texts)
|
||||
dim = len(embeddings[0])
|
||||
# Constants
|
||||
vector_number = len(embeddings) # initial number of vectors
|
||||
# name of the search index if not given
|
||||
if not index_name:
|
||||
index_name = uuid.uuid4().hex
|
||||
prefix = "doc" # prefix for the document keys
|
||||
distance_metric = (
|
||||
"COSINE" # distance metric for the vectors (ex. COSINE, IP, L2)
|
||||
)
|
||||
content = TextField(name="content")
|
||||
metadata = TextField(name="metadata")
|
||||
content_embedding = VectorField(
|
||||
"content_vector",
|
||||
"FLAT",
|
||||
{
|
||||
"TYPE": "FLOAT32",
|
||||
"DIM": dim,
|
||||
"DISTANCE_METRIC": distance_metric,
|
||||
"INITIAL_CAP": vector_number,
|
||||
},
|
||||
)
|
||||
fields = [content, metadata, content_embedding]
|
||||
|
||||
# Check if index exists
|
||||
try:
|
||||
client.ft(index_name).info()
|
||||
print("Index already exists")
|
||||
except: # noqa
|
||||
# Create Redis Index
|
||||
client.ft(index_name).create_index(
|
||||
fields=fields,
|
||||
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
|
||||
)
|
||||
|
||||
pipeline = client.pipeline()
|
||||
for i, text in enumerate(texts):
|
||||
key = f"{prefix}:{str(uuid.uuid4().hex)}"
|
||||
metadata = metadatas[i] if metadatas else {}
|
||||
pipeline.hset(
|
||||
key,
|
||||
mapping={
|
||||
"content": text,
|
||||
"content_vector": np.array(
|
||||
embeddings[i], dtype=np.float32
|
||||
).tobytes(),
|
||||
"metadata": json.dumps(metadata),
|
||||
},
|
||||
)
|
||||
pipeline.execute()
|
||||
return cls(redis_url, index_name, embedding.embed_query)
|
26
tests/integration_tests/vectorstores/test_redis.py
Normal file
26
tests/integration_tests/vectorstores/test_redis.py
Normal file
@ -0,0 +1,26 @@
|
||||
"""Test Redis functionality."""
|
||||
|
||||
from langchain.docstore.document import Document
|
||||
from langchain.vectorstores.redis import Redis
|
||||
from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings
|
||||
|
||||
|
||||
def test_redis() -> None:
|
||||
"""Test end to end construction and search."""
|
||||
texts = ["foo", "bar", "baz"]
|
||||
docsearch = Redis.from_texts(
|
||||
texts, FakeEmbeddings(), redis_url="redis://localhost:6379"
|
||||
)
|
||||
output = docsearch.similarity_search("foo", k=1)
|
||||
assert output == [Document(page_content="foo")]
|
||||
|
||||
|
||||
def test_redis_new_vector() -> None:
|
||||
"""Test adding a new document"""
|
||||
texts = ["foo", "bar", "baz"]
|
||||
docsearch = Redis.from_texts(
|
||||
texts, FakeEmbeddings(), redis_url="redis://localhost:6379"
|
||||
)
|
||||
docsearch.add_texts(["foo"])
|
||||
output = docsearch.similarity_search("foo", k=2)
|
||||
assert output == [Document(page_content="foo"), Document(page_content="foo")]
|
Loading…
Reference in New Issue
Block a user