mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
Harrison/gml save (#1676)
Co-authored-by: Satoru Sakamoto <51464932+satoru814@users.noreply.github.com>
This commit is contained in:
parent
656efe6ef3
commit
4d7fdb8957
@ -178,16 +178,16 @@
|
||||
"text": [
|
||||
"\n",
|
||||
"\n",
|
||||
"\u001B[1m> Entering new GraphQAChain chain...\u001B[0m\n",
|
||||
"\u001b[1m> Entering new GraphQAChain chain...\u001b[0m\n",
|
||||
"Entities Extracted:\n",
|
||||
"\u001B[32;1m\u001B[1;3m Intel\u001B[0m\n",
|
||||
"\u001b[32;1m\u001b[1;3m Intel\u001b[0m\n",
|
||||
"Full Context:\n",
|
||||
"\u001B[32;1m\u001B[1;3mIntel is going to build $20 billion semiconductor \"mega site\"\n",
|
||||
"\u001b[32;1m\u001b[1;3mIntel is going to build $20 billion semiconductor \"mega site\"\n",
|
||||
"Intel is building state-of-the-art factories\n",
|
||||
"Intel is creating 10,000 new good-paying jobs\n",
|
||||
"Intel is helping build Silicon Valley\u001B[0m\n",
|
||||
"Intel is helping build Silicon Valley\u001b[0m\n",
|
||||
"\n",
|
||||
"\u001B[1m> Finished chain.\u001B[0m\n"
|
||||
"\u001b[1m> Finished chain.\u001b[0m\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -205,10 +205,76 @@
|
||||
"chain.run(\"what is Intel going to build?\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "410aafa0",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Save the graph\n",
|
||||
"We can also save and load the graph."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"id": "bc72cca0",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"graph.write_to_gml(\"graph.gml\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"id": "652760ad",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.indexes.graph import NetworkxEntityGraph"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"id": "eae591fe",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"loaded_graph = NetworkxEntityGraph.from_gml(\"graph.gml\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"id": "9439d419",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[('Intel', '$20 billion semiconductor \"mega site\"', 'is going to build'),\n",
|
||||
" ('Intel', 'state-of-the-art factories', 'is building'),\n",
|
||||
" ('Intel', '10,000 new good-paying jobs', 'is creating'),\n",
|
||||
" ('Intel', 'Silicon Valley', 'is helping build'),\n",
|
||||
" ('Field of dreams',\n",
|
||||
" \"America's future will be built\",\n",
|
||||
" 'is the ground on which')]"
|
||||
]
|
||||
},
|
||||
"execution_count": 10,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"loaded_graph.get_triples()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "f70b9ada",
|
||||
"id": "045796cf",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
|
@ -1,6 +1,7 @@
|
||||
"""Networkx wrapper for graph operations."""
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import List, NamedTuple, Tuple
|
||||
from typing import Any, List, NamedTuple, Optional, Tuple
|
||||
|
||||
KG_TRIPLE_DELIMITER = "<|>"
|
||||
|
||||
@ -48,7 +49,7 @@ def get_entities(entity_str: str) -> List[str]:
|
||||
class NetworkxEntityGraph:
|
||||
"""Networkx wrapper for entity graph operations."""
|
||||
|
||||
def __init__(self) -> None:
|
||||
def __init__(self, graph: Optional[Any] = None) -> None:
|
||||
"""Create a new graph."""
|
||||
try:
|
||||
import networkx as nx
|
||||
@ -57,9 +58,25 @@ class NetworkxEntityGraph:
|
||||
"Could not import networkx python package. "
|
||||
"Please it install it with `pip install networkx`."
|
||||
)
|
||||
|
||||
if graph is not None:
|
||||
if not isinstance(graph, nx.DiGraph):
|
||||
raise ValueError("Passed in graph is not of correct shape")
|
||||
self._graph = graph
|
||||
else:
|
||||
self._graph = nx.DiGraph()
|
||||
|
||||
@classmethod
|
||||
def from_gml(cls, gml_path: str) -> NetworkxEntityGraph:
|
||||
try:
|
||||
import networkx as nx
|
||||
except ImportError:
|
||||
raise ValueError(
|
||||
"Could not import networkx python package. "
|
||||
"Please it install it with `pip install networkx`."
|
||||
)
|
||||
graph = nx.read_gml(gml_path)
|
||||
return cls(graph)
|
||||
|
||||
def add_triple(self, knowledge_triple: KnowledgeTriple) -> None:
|
||||
"""Add a triple to the graph."""
|
||||
# Creates nodes if they don't exist
|
||||
@ -97,6 +114,11 @@ class NetworkxEntityGraph:
|
||||
results.append(f"{src} {relation} {sink}")
|
||||
return results
|
||||
|
||||
def write_to_gml(self, path: str) -> None:
|
||||
import networkx as nx
|
||||
|
||||
nx.write_gml(self._graph, path)
|
||||
|
||||
def clear(self) -> None:
|
||||
"""Clear the graph."""
|
||||
self._graph.clear()
|
||||
|
Loading…
Reference in New Issue
Block a user