mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
community: Add MiniMaxChat bind_tools and structured output (#24310)
- **Description:** - Add `bind_tools` method to support tool calling - Add `with_structured_output` method to support structured output
This commit is contained in:
parent
0a2ff40fcc
commit
4bb1a11e02
@ -3,12 +3,25 @@
|
|||||||
import json
|
import json
|
||||||
import logging
|
import logging
|
||||||
from contextlib import asynccontextmanager, contextmanager
|
from contextlib import asynccontextmanager, contextmanager
|
||||||
from typing import Any, AsyncIterator, Dict, Iterator, List, Optional, Type, Union
|
from operator import itemgetter
|
||||||
|
from typing import (
|
||||||
|
Any,
|
||||||
|
AsyncIterator,
|
||||||
|
Callable,
|
||||||
|
Dict,
|
||||||
|
Iterator,
|
||||||
|
List,
|
||||||
|
Optional,
|
||||||
|
Sequence,
|
||||||
|
Type,
|
||||||
|
Union,
|
||||||
|
)
|
||||||
|
|
||||||
from langchain_core.callbacks import (
|
from langchain_core.callbacks import (
|
||||||
AsyncCallbackManagerForLLMRun,
|
AsyncCallbackManagerForLLMRun,
|
||||||
CallbackManagerForLLMRun,
|
CallbackManagerForLLMRun,
|
||||||
)
|
)
|
||||||
|
from langchain_core.language_models import LanguageModelInput
|
||||||
from langchain_core.language_models.chat_models import (
|
from langchain_core.language_models.chat_models import (
|
||||||
BaseChatModel,
|
BaseChatModel,
|
||||||
agenerate_from_stream,
|
agenerate_from_stream,
|
||||||
@ -23,10 +36,19 @@ from langchain_core.messages import (
|
|||||||
ChatMessageChunk,
|
ChatMessageChunk,
|
||||||
HumanMessage,
|
HumanMessage,
|
||||||
SystemMessage,
|
SystemMessage,
|
||||||
|
ToolMessage,
|
||||||
|
)
|
||||||
|
from langchain_core.output_parsers.base import OutputParserLike
|
||||||
|
from langchain_core.output_parsers.openai_tools import (
|
||||||
|
JsonOutputKeyToolsParser,
|
||||||
|
PydanticToolsParser,
|
||||||
)
|
)
|
||||||
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
||||||
from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr, root_validator
|
from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr, root_validator
|
||||||
|
from langchain_core.runnables import Runnable, RunnableMap, RunnablePassthrough
|
||||||
|
from langchain_core.tools import BaseTool
|
||||||
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
|
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
|
||||||
|
from langchain_core.utils.function_calling import convert_to_openai_tool
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
@ -77,9 +99,20 @@ def _convert_message_to_dict(message: BaseMessage) -> Dict[str, Any]:
|
|||||||
if isinstance(message, HumanMessage):
|
if isinstance(message, HumanMessage):
|
||||||
message_dict = {"role": "user", "content": message.content}
|
message_dict = {"role": "user", "content": message.content}
|
||||||
elif isinstance(message, AIMessage):
|
elif isinstance(message, AIMessage):
|
||||||
message_dict = {"role": "assistant", "content": message.content}
|
message_dict = {
|
||||||
|
"role": "assistant",
|
||||||
|
"content": message.content,
|
||||||
|
"tool_calls": message.additional_kwargs.get("tool_calls"),
|
||||||
|
}
|
||||||
elif isinstance(message, SystemMessage):
|
elif isinstance(message, SystemMessage):
|
||||||
message_dict = {"role": "system", "content": message.content}
|
message_dict = {"role": "system", "content": message.content}
|
||||||
|
elif isinstance(message, ToolMessage):
|
||||||
|
message_dict = {
|
||||||
|
"role": "tool",
|
||||||
|
"content": message.content,
|
||||||
|
"tool_call_id": message.tool_call_id,
|
||||||
|
"name": message.name or message.additional_kwargs.get("name"),
|
||||||
|
}
|
||||||
else:
|
else:
|
||||||
raise TypeError(f"Got unknown type '{message.__class__.__name__}'.")
|
raise TypeError(f"Got unknown type '{message.__class__.__name__}'.")
|
||||||
return message_dict
|
return message_dict
|
||||||
@ -230,6 +263,70 @@ class MiniMaxChat(BaseChatModel):
|
|||||||
id='run-c263b6f1-1736-4ece-a895-055c26b3436f-0'
|
id='run-c263b6f1-1736-4ece-a895-055c26b3436f-0'
|
||||||
)
|
)
|
||||||
|
|
||||||
|
Tool calling:
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
from langchain_core.pydantic_v1 import BaseModel, Field
|
||||||
|
|
||||||
|
|
||||||
|
class GetWeather(BaseModel):
|
||||||
|
'''Get the current weather in a given location'''
|
||||||
|
|
||||||
|
location: str = Field(
|
||||||
|
..., description="The city and state, e.g. San Francisco, CA"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class GetPopulation(BaseModel):
|
||||||
|
'''Get the current population in a given location'''
|
||||||
|
|
||||||
|
location: str = Field(
|
||||||
|
..., description="The city and state, e.g. San Francisco, CA"
|
||||||
|
)
|
||||||
|
|
||||||
|
chat_with_tools = chat.bind_tools([GetWeather, GetPopulation])
|
||||||
|
ai_msg = chat_with_tools.invoke(
|
||||||
|
"Which city is hotter today and which is bigger: LA or NY?"
|
||||||
|
)
|
||||||
|
ai_msg.tool_calls
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
[
|
||||||
|
{
|
||||||
|
'name': 'GetWeather',
|
||||||
|
'args': {'location': 'LA'},
|
||||||
|
'id': 'call_function_2140449382',
|
||||||
|
'type': 'tool_call'
|
||||||
|
}
|
||||||
|
]
|
||||||
|
|
||||||
|
Structured output:
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
|
from langchain_core.pydantic_v1 import BaseModel, Field
|
||||||
|
|
||||||
|
|
||||||
|
class Joke(BaseModel):
|
||||||
|
'''Joke to tell user.'''
|
||||||
|
setup: str = Field(description="The setup of the joke")
|
||||||
|
punchline: str = Field(description="The punchline to the joke")
|
||||||
|
rating: Optional[int] = Field(description="How funny the joke is, from 1 to 10")
|
||||||
|
|
||||||
|
|
||||||
|
structured_chat = chat.with_structured_output(Joke)
|
||||||
|
structured_chat.invoke("Tell me a joke about cats")
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
Joke(
|
||||||
|
setup='Why do cats have nine lives?',
|
||||||
|
punchline='Because they are so cute and cuddly!',
|
||||||
|
rating=None
|
||||||
|
)
|
||||||
|
|
||||||
Response metadata
|
Response metadata
|
||||||
.. code-block:: python
|
.. code-block:: python
|
||||||
|
|
||||||
@ -242,7 +339,7 @@ class MiniMaxChat(BaseChatModel):
|
|||||||
'model_name': 'abab6.5-chat',
|
'model_name': 'abab6.5-chat',
|
||||||
'finish_reason': 'stop'}
|
'finish_reason': 'stop'}
|
||||||
|
|
||||||
""" # noqa: E501conj
|
""" # noqa: E501
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def _identifying_params(self) -> Dict[str, Any]:
|
def _identifying_params(self) -> Dict[str, Any]:
|
||||||
@ -342,12 +439,26 @@ class MiniMaxChat(BaseChatModel):
|
|||||||
message_dicts = [_convert_message_to_dict(m) for m in messages]
|
message_dicts = [_convert_message_to_dict(m) for m in messages]
|
||||||
payload = self._default_params
|
payload = self._default_params
|
||||||
payload["messages"] = message_dicts
|
payload["messages"] = message_dicts
|
||||||
|
|
||||||
|
self._reformat_function_parameters(kwargs.get("tools", {}))
|
||||||
payload.update(**kwargs)
|
payload.update(**kwargs)
|
||||||
|
|
||||||
if is_stream:
|
if is_stream:
|
||||||
payload["stream"] = True
|
payload["stream"] = True
|
||||||
|
|
||||||
return payload
|
return payload
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def _reformat_function_parameters(tools_arg: Dict[Any, Any]) -> None:
|
||||||
|
"""Reformat the function parameters to strings."""
|
||||||
|
for tool_arg in tools_arg:
|
||||||
|
if tool_arg["type"] == "function" and not isinstance(
|
||||||
|
tool_arg["function"]["parameters"], str
|
||||||
|
):
|
||||||
|
tool_arg["function"]["parameters"] = json.dumps(
|
||||||
|
tool_arg["function"]["parameters"]
|
||||||
|
)
|
||||||
|
|
||||||
def _generate(
|
def _generate(
|
||||||
self,
|
self,
|
||||||
messages: List[BaseMessage],
|
messages: List[BaseMessage],
|
||||||
@ -521,3 +632,154 @@ class MiniMaxChat(BaseChatModel):
|
|||||||
|
|
||||||
if finish_reason is not None:
|
if finish_reason is not None:
|
||||||
break
|
break
|
||||||
|
|
||||||
|
def bind_tools(
|
||||||
|
self,
|
||||||
|
tools: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]],
|
||||||
|
**kwargs: Any,
|
||||||
|
) -> Runnable[LanguageModelInput, BaseMessage]:
|
||||||
|
"""Bind tool-like objects to this chat model.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
tools: A list of tool definitions to bind to this chat model.
|
||||||
|
Can be a dictionary, pydantic model, callable, or BaseTool. Pydantic
|
||||||
|
models, callables, and BaseTools will be automatically converted to
|
||||||
|
their schema dictionary representation.
|
||||||
|
**kwargs: Any additional parameters to pass to the
|
||||||
|
:class: `~langchain.runnable.Runnable` constructor.
|
||||||
|
"""
|
||||||
|
|
||||||
|
formatted_tools = [convert_to_openai_tool(tool) for tool in tools]
|
||||||
|
return super().bind(tools=formatted_tools, **kwargs)
|
||||||
|
|
||||||
|
def with_structured_output(
|
||||||
|
self,
|
||||||
|
schema: Union[Dict, Type[BaseModel]],
|
||||||
|
*,
|
||||||
|
include_raw: bool = False,
|
||||||
|
**kwargs: Any,
|
||||||
|
) -> Runnable[LanguageModelInput, Union[Dict, BaseModel]]:
|
||||||
|
"""Model wrapper that returns outputs formatted to match the given schema.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
schema: The output schema as a dict or a Pydantic class. If a Pydantic class
|
||||||
|
then the model output will be an object of that class. If a dict then
|
||||||
|
the model output will be a dict. With a Pydantic class the returned
|
||||||
|
attributes will be validated, whereas with a dict they will not be. If
|
||||||
|
`method` is "function_calling" and `schema` is a dict, then the dict
|
||||||
|
must match the OpenAI function-calling spec.
|
||||||
|
include_raw: If False then only the parsed structured output is returned. If
|
||||||
|
an error occurs during model output parsing it will be raised. If True
|
||||||
|
then both the raw model response (a BaseMessage) and the parsed model
|
||||||
|
response will be returned. If an error occurs during output parsing it
|
||||||
|
will be caught and returned as well. The final output is always a dict
|
||||||
|
with keys "raw", "parsed", and "parsing_error".
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
A Runnable that takes any ChatModel input and returns as output:
|
||||||
|
|
||||||
|
If include_raw is True then a dict with keys:
|
||||||
|
raw: BaseMessage
|
||||||
|
parsed: Optional[_DictOrPydantic]
|
||||||
|
parsing_error: Optional[BaseException]
|
||||||
|
|
||||||
|
If include_raw is False then just _DictOrPydantic is returned,
|
||||||
|
where _DictOrPydantic depends on the schema:
|
||||||
|
|
||||||
|
If schema is a Pydantic class then _DictOrPydantic is the Pydantic
|
||||||
|
class.
|
||||||
|
|
||||||
|
If schema is a dict then _DictOrPydantic is a dict.
|
||||||
|
|
||||||
|
Example: Function-calling, Pydantic schema (method="function_calling", include_raw=False):
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
from langchain_community.chat_models import MiniMaxChat
|
||||||
|
from langchain_core.pydantic_v1 import BaseModel
|
||||||
|
|
||||||
|
class AnswerWithJustification(BaseModel):
|
||||||
|
'''An answer to the user question along with justification for the answer.'''
|
||||||
|
answer: str
|
||||||
|
justification: str
|
||||||
|
|
||||||
|
llm = MiniMaxChat()
|
||||||
|
structured_llm = llm.with_structured_output(AnswerWithJustification)
|
||||||
|
|
||||||
|
structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
|
||||||
|
|
||||||
|
# -> AnswerWithJustification(
|
||||||
|
# answer='A pound of bricks and a pound of feathers weigh the same.',
|
||||||
|
# justification='The weight of the feathers is much less dense than the weight of the bricks, but since both weigh one pound, they weigh the same.'
|
||||||
|
# )
|
||||||
|
|
||||||
|
Example: Function-calling, Pydantic schema (method="function_calling", include_raw=True):
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
from langchain_community.chat_models import MiniMaxChat
|
||||||
|
from langchain_core.pydantic_v1 import BaseModel
|
||||||
|
|
||||||
|
class AnswerWithJustification(BaseModel):
|
||||||
|
'''An answer to the user question along with justification for the answer.'''
|
||||||
|
answer: str
|
||||||
|
justification: str
|
||||||
|
|
||||||
|
llm = MiniMaxChat()
|
||||||
|
structured_llm = llm.with_structured_output(AnswerWithJustification, include_raw=True)
|
||||||
|
|
||||||
|
structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
|
||||||
|
|
||||||
|
# -> {
|
||||||
|
# 'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_function_8953642285', 'type': 'function', 'function': {'name': 'AnswerWithJustification', 'arguments': '{"answer": "A pound of bricks and a pound of feathers weigh the same.", "justification": "The weight of the feathers is much less dense than the weight of the bricks, but since both weigh one pound, they weigh the same."}'}}]}, response_metadata={'token_usage': {'total_tokens': 257}, 'model_name': 'abab6.5-chat', 'finish_reason': 'tool_calls'}, id='run-d897e037-2796-49f5-847e-f9f69dd390db-0', tool_calls=[{'name': 'AnswerWithJustification', 'args': {'answer': 'A pound of bricks and a pound of feathers weigh the same.', 'justification': 'The weight of the feathers is much less dense than the weight of the bricks, but since both weigh one pound, they weigh the same.'}, 'id': 'call_function_8953642285', 'type': 'tool_call'}]),
|
||||||
|
# 'parsed': AnswerWithJustification(answer='A pound of bricks and a pound of feathers weigh the same.', justification='The weight of the feathers is much less dense than the weight of the bricks, but since both weigh one pound, they weigh the same.'),
|
||||||
|
# 'parsing_error': None
|
||||||
|
# }
|
||||||
|
|
||||||
|
Example: Function-calling, dict schema (method="function_calling", include_raw=False):
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
from langchain_community.chat_models import MiniMaxChat
|
||||||
|
from langchain_core.pydantic_v1 import BaseModel
|
||||||
|
from langchain_core.utils.function_calling import convert_to_openai_tool
|
||||||
|
|
||||||
|
class AnswerWithJustification(BaseModel):
|
||||||
|
'''An answer to the user question along with justification for the answer.'''
|
||||||
|
answer: str
|
||||||
|
justification: str
|
||||||
|
|
||||||
|
dict_schema = convert_to_openai_tool(AnswerWithJustification)
|
||||||
|
llm = MiniMaxChat()
|
||||||
|
structured_llm = llm.with_structured_output(dict_schema)
|
||||||
|
|
||||||
|
structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
|
||||||
|
|
||||||
|
# -> {
|
||||||
|
# 'answer': 'A pound of bricks and a pound of feathers both weigh the same, which is a pound.',
|
||||||
|
# 'justification': 'The difference is that bricks are much denser than feathers, so a pound of bricks will take up much less space than a pound of feathers.'
|
||||||
|
# }
|
||||||
|
""" # noqa: E501
|
||||||
|
if kwargs:
|
||||||
|
raise ValueError(f"Received unsupported arguments {kwargs}")
|
||||||
|
is_pydantic_schema = isinstance(schema, type) and issubclass(schema, BaseModel)
|
||||||
|
llm = self.bind_tools([schema])
|
||||||
|
if is_pydantic_schema:
|
||||||
|
output_parser: OutputParserLike = PydanticToolsParser(
|
||||||
|
tools=[schema], # type: ignore[list-item]
|
||||||
|
first_tool_only=True, # type: ignore[list-item]
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
key_name = convert_to_openai_tool(schema)["function"]["name"]
|
||||||
|
output_parser = JsonOutputKeyToolsParser(
|
||||||
|
key_name=key_name, first_tool_only=True
|
||||||
|
)
|
||||||
|
|
||||||
|
if include_raw:
|
||||||
|
parser_assign = RunnablePassthrough.assign(
|
||||||
|
parsed=itemgetter("raw") | output_parser, parsing_error=lambda _: None
|
||||||
|
)
|
||||||
|
parser_none = RunnablePassthrough.assign(parsed=lambda _: None)
|
||||||
|
parser_with_fallback = parser_assign.with_fallbacks(
|
||||||
|
[parser_none], exception_key="parsing_error"
|
||||||
|
)
|
||||||
|
return RunnableMap(raw=llm) | parser_with_fallback
|
||||||
|
else:
|
||||||
|
return llm | output_parser
|
||||||
|
@ -1,6 +1,8 @@
|
|||||||
import os
|
import os
|
||||||
|
|
||||||
from langchain_core.messages import AIMessage
|
from langchain_core.messages import AIMessage, HumanMessage, ToolMessage
|
||||||
|
from langchain_core.pydantic_v1 import BaseModel
|
||||||
|
from langchain_core.tools import tool
|
||||||
|
|
||||||
from langchain_community.chat_models import MiniMaxChat
|
from langchain_community.chat_models import MiniMaxChat
|
||||||
|
|
||||||
@ -19,3 +21,69 @@ def test_chat_minimax_with_stream() -> None:
|
|||||||
for chunk in chat.stream("你好呀"):
|
for chunk in chat.stream("你好呀"):
|
||||||
assert isinstance(chunk, AIMessage)
|
assert isinstance(chunk, AIMessage)
|
||||||
assert isinstance(chunk.content, str)
|
assert isinstance(chunk.content, str)
|
||||||
|
|
||||||
|
|
||||||
|
@tool
|
||||||
|
def add(a: int, b: int) -> int:
|
||||||
|
"""Adds a and b."""
|
||||||
|
return a + b
|
||||||
|
|
||||||
|
|
||||||
|
@tool
|
||||||
|
def multiply(a: int, b: int) -> int:
|
||||||
|
"""Multiplies a and b."""
|
||||||
|
return a * b
|
||||||
|
|
||||||
|
|
||||||
|
def test_chat_minimax_with_tool() -> None:
|
||||||
|
"""Test MinimaxChat with bind tools."""
|
||||||
|
chat = MiniMaxChat() # type: ignore[call-arg]
|
||||||
|
tools = [add, multiply]
|
||||||
|
chat_with_tools = chat.bind_tools(tools)
|
||||||
|
|
||||||
|
query = "What is 3 * 12?"
|
||||||
|
messages = [HumanMessage(query)]
|
||||||
|
ai_msg = chat_with_tools.invoke(messages)
|
||||||
|
assert isinstance(ai_msg, AIMessage)
|
||||||
|
assert isinstance(ai_msg.tool_calls, list)
|
||||||
|
assert len(ai_msg.tool_calls) == 1
|
||||||
|
tool_call = ai_msg.tool_calls[0]
|
||||||
|
assert "args" in tool_call
|
||||||
|
messages.append(ai_msg) # type: ignore[arg-type]
|
||||||
|
for tool_call in ai_msg.tool_calls:
|
||||||
|
selected_tool = {"add": add, "multiply": multiply}[tool_call["name"].lower()]
|
||||||
|
tool_output = selected_tool.invoke(tool_call["args"]) # type: ignore[attr-defined]
|
||||||
|
messages.append(ToolMessage(tool_output, tool_call_id=tool_call["id"])) # type: ignore[arg-type]
|
||||||
|
response = chat_with_tools.invoke(messages)
|
||||||
|
assert isinstance(response, AIMessage)
|
||||||
|
|
||||||
|
|
||||||
|
class AnswerWithJustification(BaseModel):
|
||||||
|
"""An answer to the user question along with justification for the answer."""
|
||||||
|
|
||||||
|
answer: str
|
||||||
|
justification: str
|
||||||
|
|
||||||
|
|
||||||
|
def test_chat_minimax_with_structured_output() -> None:
|
||||||
|
"""Test MiniMaxChat with structured output."""
|
||||||
|
llm = MiniMaxChat() # type: ignore
|
||||||
|
structured_llm = llm.with_structured_output(AnswerWithJustification)
|
||||||
|
response = structured_llm.invoke(
|
||||||
|
"What weighs more a pound of bricks or a pound of feathers"
|
||||||
|
)
|
||||||
|
assert isinstance(response, AnswerWithJustification)
|
||||||
|
|
||||||
|
|
||||||
|
def test_chat_tongyi_with_structured_output_include_raw() -> None:
|
||||||
|
"""Test MiniMaxChat with structured output."""
|
||||||
|
llm = MiniMaxChat() # type: ignore
|
||||||
|
structured_llm = llm.with_structured_output(
|
||||||
|
AnswerWithJustification, include_raw=True
|
||||||
|
)
|
||||||
|
response = structured_llm.invoke(
|
||||||
|
"What weighs more a pound of bricks or a pound of feathers"
|
||||||
|
)
|
||||||
|
assert isinstance(response, dict)
|
||||||
|
assert isinstance(response.get("raw"), AIMessage)
|
||||||
|
assert isinstance(response.get("parsed"), AnswerWithJustification)
|
||||||
|
Loading…
Reference in New Issue
Block a user