mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
parent
5171c3bcca
commit
4a94f56258
@ -65,7 +65,7 @@ index.query(question)
|
||||
|
||||
|
||||
|
||||
Of course, some users do not wnat this level of abstraction.
|
||||
Of course, some users do not want this level of abstraction.
|
||||
|
||||
Below, we will discuss each stage in more detail.
|
||||
|
||||
@ -113,13 +113,13 @@ Here are the three pieces together:
|
||||
|
||||
#### 1.2.1 Integrations
|
||||
|
||||
`Data Loaders`
|
||||
`Document Loaders`
|
||||
|
||||
* Browse the > 120 data loader integrations [here](https://integrations.langchain.com/).
|
||||
|
||||
* See further documentation on loaders [here](https://python.langchain.com/docs/modules/data_connection/document_loaders/).
|
||||
|
||||
`Data Transformers`
|
||||
`Document Transformers`
|
||||
|
||||
* All can ingest loaded `Documents` and process them (e.g., split).
|
||||
|
||||
@ -133,7 +133,7 @@ Here are the three pieces together:
|
||||
|
||||
#### 1.2.2 Retaining metadata
|
||||
|
||||
`Context-aware splitters` keep the location or "context" of each split in the origional `Document`:
|
||||
`Context-aware splitters` keep the location ("context") of each split in the origional `Document`:
|
||||
|
||||
* [Markdown files](https://python.langchain.com/docs/use_cases/question_answering/document-context-aware-QA)
|
||||
* [Code (py or js)](https://python.langchain.com/docs/modules/data_connection/document_loaders/integrations/source_code)
|
||||
@ -171,7 +171,7 @@ For example, SVMs (see thread [here](https://twitter.com/karpathy/status/1647025
|
||||
|
||||
LangChain [has many retrievers](https://python.langchain.com/docs/modules/data_connection/retrievers/) including, but not limited to, vectorstores.
|
||||
|
||||
All retrievers implement some common, useful methods, such as `get_relevant_documents()`.
|
||||
All retrievers implement some common methods, such as `get_relevant_documents()`.
|
||||
|
||||
|
||||
```python
|
||||
@ -222,7 +222,7 @@ len(unique_docs)
|
||||
|
||||
### 3.1 Getting started
|
||||
|
||||
Distill the retried documents into an answer using an LLM (e.g., `gpt-3.5-turbo`) with `RetrievalQA` chain.
|
||||
Distill the retrieved documents into an answer using an LLM (e.g., `gpt-3.5-turbo`) with `RetrievalQA` chain.
|
||||
|
||||
|
||||
```python
|
||||
@ -247,9 +247,9 @@ qa_chain({"query": question})
|
||||
|
||||
`LLMs`
|
||||
|
||||
* Browse the > 55 model integrations [here](https://integrations.langchain.com/).
|
||||
* Browse the > 55 LLM integrations [here](https://integrations.langchain.com/).
|
||||
|
||||
* See further documentation on vectorstores [here](https://python.langchain.com/docs/modules/model_io/models/).
|
||||
* See further documentation on LLMs [here](https://python.langchain.com/docs/modules/model_io/models/).
|
||||
|
||||
#### 3.2.2 Running LLMs locally
|
||||
|
||||
@ -355,7 +355,7 @@ result
|
||||
|
||||
|
||||
|
||||
#### 3.2.5 Customizing how pass retrieved documents to the LLM
|
||||
#### 3.2.5 Customizing retrieved docs in the LLM prompt
|
||||
|
||||
Retrieved documents can be fed to an LLM for answer distillation in a few different ways.
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user