mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
docs: integrations
reference updates 5 (#25151)
Added missed references. Added missed provider pages. --------- Co-authored-by: Chester Curme <chester.curme@gmail.com>
This commit is contained in:
parent
44e3e2391c
commit
49b0bc7b5a
@ -26,6 +26,7 @@ from langchain_anthropic import ChatAnthropic
|
||||
model = ChatAnthropic(model='claude-3-opus-20240229')
|
||||
```
|
||||
|
||||
|
||||
## LLMs
|
||||
|
||||
### [Legacy] AnthropicLLM
|
||||
|
@ -204,7 +204,7 @@ AWS offers services for computing, databases, storage, analytics, and other func
|
||||
See a [usage example](/docs/integrations/vectorstores/documentdb).
|
||||
|
||||
```python
|
||||
from langchain.vectorstores import DocumentDBVectorSearch
|
||||
from langchain_community.vectorstores import DocumentDBVectorSearch
|
||||
```
|
||||
### Amazon MemoryDB
|
||||
[Amazon MemoryDB](https://aws.amazon.com/memorydb/) is a durable, in-memory database service that delivers ultra-fast performance. MemoryDB is compatible with Redis OSS, a popular open source data store,
|
||||
@ -305,7 +305,7 @@ pip install boto3
|
||||
See a [usage example](/docs/integrations/memory/aws_dynamodb).
|
||||
|
||||
```python
|
||||
from langchain.memory import DynamoDBChatMessageHistory
|
||||
from langchain_community.chat_message_histories import DynamoDBChatMessageHistory
|
||||
```
|
||||
|
||||
## Graphs
|
||||
@ -333,6 +333,12 @@ from langchain_community.chains.graph_qa.neptune_sparql import NeptuneSparqlQACh
|
||||
|
||||
## Callbacks
|
||||
|
||||
### Bedrock token usage
|
||||
|
||||
```python
|
||||
from langchain_community.callbacks.bedrock_anthropic_callback import BedrockAnthropicTokenUsageCallbackHandler
|
||||
```
|
||||
|
||||
### SageMaker Tracking
|
||||
|
||||
>[Amazon SageMaker](https://aws.amazon.com/sagemaker/) is a fully managed service that is used to quickly
|
||||
@ -351,7 +357,7 @@ pip install google-search-results sagemaker
|
||||
See a [usage example](/docs/integrations/callbacks/sagemaker_tracking).
|
||||
|
||||
```python
|
||||
from langchain.callbacks import SageMakerCallbackHandler
|
||||
from langchain_community.callbacks import SageMakerCallbackHandler
|
||||
```
|
||||
|
||||
## Chains
|
||||
|
@ -72,6 +72,14 @@ See a [usage example](/docs/integrations/chat/google_vertex_ai_palm).
|
||||
from langchain_google_vertexai import ChatVertexAI
|
||||
```
|
||||
|
||||
### Chat Anthropic on Vertex AI
|
||||
|
||||
See a [usage example](/docs/integrations/llms/google_vertex_ai_palm).
|
||||
|
||||
```python
|
||||
from langchain_google_vertexai.model_garden import ChatAnthropicVertex
|
||||
```
|
||||
|
||||
## LLMs
|
||||
|
||||
### Google Generative AI
|
||||
|
@ -32,5 +32,5 @@ from langchain_community.document_loaders import ArxivLoader
|
||||
See a [usage example](/docs/integrations/retrievers/arxiv).
|
||||
|
||||
```python
|
||||
from langchain.retrievers import ArxivRetriever
|
||||
from langchain_community.retrievers import ArxivRetriever
|
||||
```
|
||||
|
@ -39,6 +39,20 @@ See a [usage example](/docs/integrations/text_embedding/baidu_qianfan_endpoint).
|
||||
from langchain_community.embeddings import QianfanEmbeddingsEndpoint
|
||||
```
|
||||
|
||||
## Document loaders
|
||||
|
||||
### Baidu BOS Directory Loader
|
||||
|
||||
```python
|
||||
from langchain_community.document_loaders.baiducloud_bos_directory import BaiduBOSDirectoryLoader
|
||||
```
|
||||
|
||||
### Baidu BOS File Loader
|
||||
|
||||
```python
|
||||
from langchain_community.document_loaders.baiducloud_bos_file import BaiduBOSFileLoader
|
||||
```
|
||||
|
||||
## Vector stores
|
||||
|
||||
### Baidu Cloud ElasticSearch VectorSearch
|
||||
|
18
docs/docs/integrations/providers/bookendai.mdx
Normal file
18
docs/docs/integrations/providers/bookendai.mdx
Normal file
@ -0,0 +1,18 @@
|
||||
# bookend.ai
|
||||
|
||||
LangChain implements an integration with embeddings provided by [bookend.ai](https://bookend.ai/).
|
||||
|
||||
|
||||
## Installation and Setup
|
||||
|
||||
|
||||
You need to register and get the `API_KEY`
|
||||
from the [bookend.ai](https://bookend.ai/) website.
|
||||
|
||||
## Embedding model
|
||||
|
||||
See a [usage example](/docs/integrations/text_embedding/bookend).
|
||||
|
||||
```python
|
||||
from langchain_community.embeddings import BookendEmbeddings
|
||||
```
|
19
docs/docs/integrations/providers/coze.mdx
Normal file
19
docs/docs/integrations/providers/coze.mdx
Normal file
@ -0,0 +1,19 @@
|
||||
# Coze
|
||||
|
||||
[Coze](https://www.coze.com/) is an AI chatbot development platform that enables
|
||||
the creation and deployment of chatbots for handling diverse conversations across
|
||||
various applications.
|
||||
|
||||
|
||||
## Installation and Setup
|
||||
|
||||
First, you need to get the `API_KEY` from the [Coze](https://www.coze.com/) website.
|
||||
|
||||
|
||||
## Chat models
|
||||
|
||||
See a [usage example](/docs/integrations/chat/coze/).
|
||||
|
||||
```python
|
||||
from langchain_community.chat_models import ChatCoze
|
||||
```
|
25
docs/docs/integrations/providers/rank_bm25.mdx
Normal file
25
docs/docs/integrations/providers/rank_bm25.mdx
Normal file
@ -0,0 +1,25 @@
|
||||
# rank_bm25
|
||||
|
||||
[rank_bm25](https://github.com/dorianbrown/rank_bm25) is an open-source collection of algorithms
|
||||
designed to query documents and return the most relevant ones, commonly used for creating
|
||||
search engines.
|
||||
|
||||
See its [project page](https://github.com/dorianbrown/rank_bm25) for available algorithms.
|
||||
|
||||
|
||||
## Installation and Setup
|
||||
|
||||
First, you need to install `rank_bm25` python package.
|
||||
|
||||
```bash
|
||||
pip install rank_bm25
|
||||
```
|
||||
|
||||
|
||||
## Retriever
|
||||
|
||||
See a [usage example](/docs/integrations/retrievers/bm25).
|
||||
|
||||
```python
|
||||
from langchain_community.retrievers import BM25Retriever
|
||||
```
|
Loading…
Reference in New Issue
Block a user