docs: integrations reference updates 5 (#25151)

Added missed references. Added missed provider pages.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
This commit is contained in:
Leonid Ganeline 2024-08-26 12:12:39 -07:00 committed by GitHub
parent 44e3e2391c
commit 49b0bc7b5a
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
8 changed files with 95 additions and 4 deletions

View File

@ -26,6 +26,7 @@ from langchain_anthropic import ChatAnthropic
model = ChatAnthropic(model='claude-3-opus-20240229')
```
## LLMs
### [Legacy] AnthropicLLM

View File

@ -204,7 +204,7 @@ AWS offers services for computing, databases, storage, analytics, and other func
See a [usage example](/docs/integrations/vectorstores/documentdb).
```python
from langchain.vectorstores import DocumentDBVectorSearch
from langchain_community.vectorstores import DocumentDBVectorSearch
```
### Amazon MemoryDB
[Amazon MemoryDB](https://aws.amazon.com/memorydb/) is a durable, in-memory database service that delivers ultra-fast performance. MemoryDB is compatible with Redis OSS, a popular open source data store,
@ -305,7 +305,7 @@ pip install boto3
See a [usage example](/docs/integrations/memory/aws_dynamodb).
```python
from langchain.memory import DynamoDBChatMessageHistory
from langchain_community.chat_message_histories import DynamoDBChatMessageHistory
```
## Graphs
@ -333,6 +333,12 @@ from langchain_community.chains.graph_qa.neptune_sparql import NeptuneSparqlQACh
## Callbacks
### Bedrock token usage
```python
from langchain_community.callbacks.bedrock_anthropic_callback import BedrockAnthropicTokenUsageCallbackHandler
```
### SageMaker Tracking
>[Amazon SageMaker](https://aws.amazon.com/sagemaker/) is a fully managed service that is used to quickly
@ -351,7 +357,7 @@ pip install google-search-results sagemaker
See a [usage example](/docs/integrations/callbacks/sagemaker_tracking).
```python
from langchain.callbacks import SageMakerCallbackHandler
from langchain_community.callbacks import SageMakerCallbackHandler
```
## Chains

View File

@ -72,6 +72,14 @@ See a [usage example](/docs/integrations/chat/google_vertex_ai_palm).
from langchain_google_vertexai import ChatVertexAI
```
### Chat Anthropic on Vertex AI
See a [usage example](/docs/integrations/llms/google_vertex_ai_palm).
```python
from langchain_google_vertexai.model_garden import ChatAnthropicVertex
```
## LLMs
### Google Generative AI

View File

@ -32,5 +32,5 @@ from langchain_community.document_loaders import ArxivLoader
See a [usage example](/docs/integrations/retrievers/arxiv).
```python
from langchain.retrievers import ArxivRetriever
from langchain_community.retrievers import ArxivRetriever
```

View File

@ -39,6 +39,20 @@ See a [usage example](/docs/integrations/text_embedding/baidu_qianfan_endpoint).
from langchain_community.embeddings import QianfanEmbeddingsEndpoint
```
## Document loaders
### Baidu BOS Directory Loader
```python
from langchain_community.document_loaders.baiducloud_bos_directory import BaiduBOSDirectoryLoader
```
### Baidu BOS File Loader
```python
from langchain_community.document_loaders.baiducloud_bos_file import BaiduBOSFileLoader
```
## Vector stores
### Baidu Cloud ElasticSearch VectorSearch

View File

@ -0,0 +1,18 @@
# bookend.ai
LangChain implements an integration with embeddings provided by [bookend.ai](https://bookend.ai/).
## Installation and Setup
You need to register and get the `API_KEY`
from the [bookend.ai](https://bookend.ai/) website.
## Embedding model
See a [usage example](/docs/integrations/text_embedding/bookend).
```python
from langchain_community.embeddings import BookendEmbeddings
```

View File

@ -0,0 +1,19 @@
# Coze
[Coze](https://www.coze.com/) is an AI chatbot development platform that enables
the creation and deployment of chatbots for handling diverse conversations across
various applications.
## Installation and Setup
First, you need to get the `API_KEY` from the [Coze](https://www.coze.com/) website.
## Chat models
See a [usage example](/docs/integrations/chat/coze/).
```python
from langchain_community.chat_models import ChatCoze
```

View File

@ -0,0 +1,25 @@
# rank_bm25
[rank_bm25](https://github.com/dorianbrown/rank_bm25) is an open-source collection of algorithms
designed to query documents and return the most relevant ones, commonly used for creating
search engines.
See its [project page](https://github.com/dorianbrown/rank_bm25) for available algorithms.
## Installation and Setup
First, you need to install `rank_bm25` python package.
```bash
pip install rank_bm25
```
## Retriever
See a [usage example](/docs/integrations/retrievers/bm25).
```python
from langchain_community.retrievers import BM25Retriever
```