Harrison/fb loader (#1277)

Co-authored-by: Vairo Di Pasquale <vairo.dp@gmail.com>
This commit is contained in:
Harrison Chase 2023-02-24 07:22:48 -08:00 committed by GitHub
parent bb53d9722d
commit 42167a1e24
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 200 additions and 0 deletions

View File

@ -0,0 +1,64 @@
{
"participants": [{"name": "User 1"}, {"name": "User 2"}],
"messages": [
{"sender_name": "User 2", "timestamp_ms": 1675597571851, "content": "Bye!"},
{
"sender_name": "User 1",
"timestamp_ms": 1675597435669,
"content": "Oh no worries! Bye",
},
{
"sender_name": "User 2",
"timestamp_ms": 1675596277579,
"content": "No Im sorry it was my mistake, the blue one is not for sale",
},
{
"sender_name": "User 1",
"timestamp_ms": 1675595140251,
"content": "I thought you were selling the blue one!",
},
{
"sender_name": "User 1",
"timestamp_ms": 1675595109305,
"content": "Im not interested in this bag. Im interested in the blue one!",
},
{
"sender_name": "User 2",
"timestamp_ms": 1675595068468,
"content": "Here is $129",
},
{
"sender_name": "User 2",
"timestamp_ms": 1675595060730,
"photos": [
{"uri": "url_of_some_picture.jpg", "creation_timestamp": 1675595059}
],
},
{
"sender_name": "User 2",
"timestamp_ms": 1675595045152,
"content": "Online is at least $100",
},
{
"sender_name": "User 1",
"timestamp_ms": 1675594799696,
"content": "How much do you want?",
},
{
"sender_name": "User 2",
"timestamp_ms": 1675577876645,
"content": "Goodmorning! $50 is too low.",
},
{
"sender_name": "User 1",
"timestamp_ms": 1675549022673,
"content": "Hi! Im interested in your bag. Im offering $50. Let me know if you are interested. Thanks!",
},
],
"title": "User 1 and User 2 chat",
"is_still_participant": true,
"thread_path": "inbox/User 1 and User 2 chat",
"magic_words": [],
"image": {"uri": "image_of_the_chat.jpg", "creation_timestamp": 1675549016},
"joinable_mode": {"mode": 1, "link": ""},
}

View File

@ -0,0 +1,77 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Facebook Chat\n",
"\n",
"This notebook covers how to load data from the Facebook Chats into a format that can be ingested into LangChain."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from langchain.document_loaders import FacebookChatLoader"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"loader = FacebookChatLoader(\"example_data/facebook_chat.json\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[Document(page_content='User 2 on 2023-02-05 12:46:11: Bye!\\n\\nUser 1 on 2023-02-05 12:43:55: Oh no worries! Bye\\n\\nUser 2 on 2023-02-05 12:24:37: No Im sorry it was my mistake, the blue one is not for sale\\n\\nUser 1 on 2023-02-05 12:05:40: I thought you were selling the blue one!\\n\\nUser 1 on 2023-02-05 12:05:09: Im not interested in this bag. Im interested in the blue one!\\n\\nUser 2 on 2023-02-05 12:04:28: Here is $129\\n\\nUser 2 on 2023-02-05 12:04:05: Online is at least $100\\n\\nUser 1 on 2023-02-05 11:59:59: How much do you want?\\n\\nUser 2 on 2023-02-05 07:17:56: Goodmorning! $50 is too low.\\n\\nUser 1 on 2023-02-04 23:17:02: Hi! Im interested in your bag. Im offering $50. Let me know if you are interested. Thanks!\\n\\n', lookup_str='', metadata={'source': 'docs/modules/document_loaders/examples/example_data/facebook_chat.json'}, lookup_index=0)]"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"loader.load()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.1"
},
"vscode": {
"interpreter": {
"hash": "384707f4965e853a82006e90614c2e1a578ea1f6eb0ee07a1dd78a657d37dd67"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@ -7,6 +7,7 @@ from langchain.document_loaders.directory import DirectoryLoader
from langchain.document_loaders.docx import UnstructuredDocxLoader
from langchain.document_loaders.email import UnstructuredEmailLoader
from langchain.document_loaders.evernote import EverNoteLoader
from langchain.document_loaders.facebook_chat import FacebookChatLoader
from langchain.document_loaders.gcs_directory import GCSDirectoryLoader
from langchain.document_loaders.gcs_file import GCSFileLoader
from langchain.document_loaders.gitbook import GitbookLoader
@ -72,5 +73,6 @@ __all__ = [
"PDFMinerLoader",
"TelegramChatLoader",
"SRTLoader",
"FacebookChatLoader",
"NotebookLoader",
]

View File

@ -0,0 +1,57 @@
"""Loader that loads Facebook chat json dump."""
import datetime
import json
from pathlib import Path
from typing import List
from langchain.docstore.document import Document
from langchain.document_loaders.base import BaseLoader
def concatenate_rows(row: dict) -> str:
"""Combine message information in a readable format ready to be used."""
sender = row["sender_name"]
text = row["content"]
date = datetime.datetime.fromtimestamp(row["timestamp_ms"] / 1000).strftime(
"%Y-%m-%d %H:%M:%S"
)
return f"{sender} on {date}: {text}\n\n"
class FacebookChatLoader(BaseLoader):
"""Loader that loads Facebook messages json directory dump."""
def __init__(self, path: str):
"""Initialize with path."""
self.file_path = path
def load(self) -> List[Document]:
"""Load documents."""
try:
import pandas as pd
except ImportError:
raise ValueError(
"pandas is needed for Facebook chat loader, "
"please install with `pip install pandas`"
)
p = Path(self.file_path)
with open(p, encoding="utf8") as f:
d = json.load(f)
normalized_messages = pd.json_normalize(d["messages"])
df_normalized_messages = pd.DataFrame(normalized_messages)
# Only keep plain text messages
# (no services, nor links, hashtags, code, bold ...)
df_filtered = df_normalized_messages[
(df_normalized_messages.content.apply(lambda x: type(x) == str))
]
df_filtered = df_filtered[["timestamp_ms", "content", "sender_name"]]
text = df_filtered.apply(concatenate_rows, axis=1).str.cat(sep="")
metadata = {"source": str(p)}
return [Document(page_content=text, metadata=metadata)]