Harrison/big query (#2100)

Co-authored-by: lu-cashmoney <lucas.corley@gmail.com>
This commit is contained in:
Harrison Chase 2023-03-28 08:17:22 -07:00 committed by GitHub
parent eff5eed719
commit 410bf37fb8
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 311 additions and 0 deletions

View File

@ -0,0 +1,202 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# BigQuery Loader\n",
"\n",
"Load a BigQuery query with one document per row."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from langchain.document_loaders import BigQueryLoader"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"BASE_QUERY = '''\n",
"SELECT\n",
" id,\n",
" dna_sequence,\n",
" organism\n",
"FROM (\n",
" SELECT\n",
" ARRAY (\n",
" SELECT\n",
" AS STRUCT 1 AS id, \"ATTCGA\" AS dna_sequence, \"Lokiarchaeum sp. (strain GC14_75).\" AS organism\n",
" UNION ALL\n",
" SELECT\n",
" AS STRUCT 2 AS id, \"AGGCGA\" AS dna_sequence, \"Heimdallarchaeota archaeon (strain LC_2).\" AS organism\n",
" UNION ALL\n",
" SELECT\n",
" AS STRUCT 3 AS id, \"TCCGGA\" AS dna_sequence, \"Acidianus hospitalis (strain W1).\" AS organism) AS new_array),\n",
" UNNEST(new_array)\n",
"'''"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Basic Usage"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"loader = BigQueryLoader(BASE_QUERY)\n",
"\n",
"data = loader.load()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[Document(page_content='id: 1\\ndna_sequence: ATTCGA\\norganism: Lokiarchaeum sp. (strain GC14_75).', lookup_str='', metadata={}, lookup_index=0), Document(page_content='id: 2\\ndna_sequence: AGGCGA\\norganism: Heimdallarchaeota archaeon (strain LC_2).', lookup_str='', metadata={}, lookup_index=0), Document(page_content='id: 3\\ndna_sequence: TCCGGA\\norganism: Acidianus hospitalis (strain W1).', lookup_str='', metadata={}, lookup_index=0)]\n"
]
}
],
"source": [
"print(data)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Specifying Which Columns are Content vs Metadata"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"loader = BigQueryLoader(BASE_QUERY, page_content_columns=[\"dna_sequence\", \"organism\"], metadata_columns=[\"id\"])\n",
"\n",
"data = loader.load()"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[Document(page_content='dna_sequence: ATTCGA\\norganism: Lokiarchaeum sp. (strain GC14_75).', lookup_str='', metadata={'id': 1}, lookup_index=0), Document(page_content='dna_sequence: AGGCGA\\norganism: Heimdallarchaeota archaeon (strain LC_2).', lookup_str='', metadata={'id': 2}, lookup_index=0), Document(page_content='dna_sequence: TCCGGA\\norganism: Acidianus hospitalis (strain W1).', lookup_str='', metadata={'id': 3}, lookup_index=0)]\n"
]
}
],
"source": [
"print(data)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Adding Source to Metadata"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"# Note that the `id` column is being returned twice, with one instance aliased as `source`\n",
"ALIASED_QUERY = '''\n",
"SELECT\n",
" id,\n",
" dna_sequence,\n",
" organism,\n",
" id as source\n",
"FROM (\n",
" SELECT\n",
" ARRAY (\n",
" SELECT\n",
" AS STRUCT 1 AS id, \"ATTCGA\" AS dna_sequence, \"Lokiarchaeum sp. (strain GC14_75).\" AS organism\n",
" UNION ALL\n",
" SELECT\n",
" AS STRUCT 2 AS id, \"AGGCGA\" AS dna_sequence, \"Heimdallarchaeota archaeon (strain LC_2).\" AS organism\n",
" UNION ALL\n",
" SELECT\n",
" AS STRUCT 3 AS id, \"TCCGGA\" AS dna_sequence, \"Acidianus hospitalis (strain W1).\" AS organism) AS new_array),\n",
" UNNEST(new_array)\n",
"'''"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"loader = BigQueryLoader(ALIASED_QUERY, metadata_columns=[\"source\"])\n",
"\n",
"data = loader.load()"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[Document(page_content='id: 1\\ndna_sequence: ATTCGA\\norganism: Lokiarchaeum sp. (strain GC14_75).\\nsource: 1', lookup_str='', metadata={'source': 1}, lookup_index=0), Document(page_content='id: 2\\ndna_sequence: AGGCGA\\norganism: Heimdallarchaeota archaeon (strain LC_2).\\nsource: 2', lookup_str='', metadata={'source': 2}, lookup_index=0), Document(page_content='id: 3\\ndna_sequence: TCCGGA\\norganism: Acidianus hospitalis (strain W1).\\nsource: 3', lookup_str='', metadata={'source': 3}, lookup_index=0)]\n"
]
}
],
"source": [
"print(data)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@ -8,6 +8,7 @@ from langchain.document_loaders.azure_blob_storage_container import (
from langchain.document_loaders.azure_blob_storage_file import ( from langchain.document_loaders.azure_blob_storage_file import (
AzureBlobStorageFileLoader, AzureBlobStorageFileLoader,
) )
from langchain.document_loaders.bigquery import BigQueryLoader
from langchain.document_loaders.blackboard import BlackboardLoader from langchain.document_loaders.blackboard import BlackboardLoader
from langchain.document_loaders.college_confidential import CollegeConfidentialLoader from langchain.document_loaders.college_confidential import CollegeConfidentialLoader
from langchain.document_loaders.conllu import CoNLLULoader from langchain.document_loaders.conllu import CoNLLULoader
@ -122,4 +123,5 @@ __all__ = [
"AzureBlobStorageContainerLoader", "AzureBlobStorageContainerLoader",
"SitemapLoader", "SitemapLoader",
"DuckDBLoader", "DuckDBLoader",
"BigQueryLoader",
] ]

View File

@ -0,0 +1,57 @@
from typing import List, Optional
from langchain.docstore.document import Document
from langchain.document_loaders.base import BaseLoader
class BigQueryLoader(BaseLoader):
"""Loads a query result from BigQuery into a list of documents.
Each document represents one row of the result. The `page_content_columns`
are written into the `page_content` of the document. The `metadata_columns`
are written into the `metadata` of the document. By default, all columns
are written into the `page_content` and none into the `metadata`.
"""
def __init__(
self,
query: str,
project: Optional[str] = None,
page_content_columns: Optional[List[str]] = None,
metadata_columns: Optional[List[str]] = None,
):
self.query = query
self.project = project
self.page_content_columns = page_content_columns
self.metadata_columns = metadata_columns
def load(self) -> List[Document]:
try:
from google.cloud import bigquery
except ImportError as ex:
raise ValueError(
"Could not import google-cloud-bigquery python package. "
"Please install it with `pip install google-cloud-bigquery`."
) from ex
bq_client = bigquery.Client(self.project)
query_result = bq_client.query(self.query).result()
docs: List[Document] = []
page_content_columns = self.page_content_columns
metadata_columns = self.metadata_columns
if page_content_columns is None:
page_content_columns = [column.name for column in query_result.schema]
if metadata_columns is None:
metadata_columns = []
for row in query_result:
page_content = "\n".join(
f"{k}: {v}" for k, v in row.items() if k in page_content_columns
)
metadata = {k: v for k, v in row.items() if k in metadata_columns}
doc = Document(page_content=page_content, metadata=metadata)
docs.append(doc)
return docs

View File

@ -0,0 +1,50 @@
import pytest
from langchain.document_loaders.bigquery import BigQueryLoader
try:
from google.cloud import bigquery # noqa: F401
bigquery_installed = True
except ImportError:
bigquery_installed = False
@pytest.mark.skipif(not bigquery_installed, reason="bigquery not installed")
def test_bigquery_loader_no_options() -> None:
loader = BigQueryLoader("SELECT 1 AS a, 2 AS b")
docs = loader.load()
assert len(docs) == 1
assert docs[0].page_content == "a: 1\nb: 2"
assert docs[0].metadata == {}
@pytest.mark.skipif(not bigquery_installed, reason="bigquery not installed")
def test_bigquery_loader_page_content_columns() -> None:
loader = BigQueryLoader(
"SELECT 1 AS a, 2 AS b UNION ALL SELECT 3 AS a, 4 AS b",
page_content_columns=["a"],
)
docs = loader.load()
assert len(docs) == 2
assert docs[0].page_content == "a: 1"
assert docs[0].metadata == {}
assert docs[1].page_content == "a: 3"
assert docs[1].metadata == {}
@pytest.mark.skipif(not bigquery_installed, reason="bigquery not installed")
def test_bigquery_loader_metadata_columns() -> None:
loader = BigQueryLoader(
"SELECT 1 AS a, 2 AS b",
page_content_columns=["a"],
metadata_columns=["b"],
)
docs = loader.load()
assert len(docs) == 1
assert docs[0].page_content == "a: 1"
assert docs[0].metadata == {"b": 2}