mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
Allow to specify ID when adding to the FAISS vectorstore. (#5190)
# Allow to specify ID when adding to the FAISS vectorstore This change allows unique IDs to be specified when adding documents / embeddings to a faiss vectorstore. - This reflects the current approach with the chroma vectorstore. - It allows rejection of inserts on duplicate IDs - will allow deletion / update by searching on deterministic ID (such as a hash). - If not specified, a random UUID is generated (as per previous behaviour, so non-breaking). This commit fixes #5065 and #3896 and should fix #2699 indirectly. I've tested adding and merging. Kindly tagging @Xmaster6y @dev2049 for review. --------- Co-authored-by: Ati Sharma <ati@agalmic.ltd> Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
This commit is contained in:
parent
f0ea093de8
commit
40b086d6e8
@ -96,6 +96,7 @@ class FAISS(VectorStore):
|
||||
texts: Iterable[str],
|
||||
embeddings: Iterable[List[float]],
|
||||
metadatas: Optional[List[dict]] = None,
|
||||
ids: Optional[List[str]] = None,
|
||||
**kwargs: Any,
|
||||
) -> List[str]:
|
||||
if not isinstance(self.docstore, AddableMixin):
|
||||
@ -107,6 +108,8 @@ class FAISS(VectorStore):
|
||||
for i, text in enumerate(texts):
|
||||
metadata = metadatas[i] if metadatas else {}
|
||||
documents.append(Document(page_content=text, metadata=metadata))
|
||||
if ids is None:
|
||||
ids = [str(uuid.uuid4()) for _ in texts]
|
||||
# Add to the index, the index_to_id mapping, and the docstore.
|
||||
starting_len = len(self.index_to_docstore_id)
|
||||
faiss = dependable_faiss_import()
|
||||
@ -115,10 +118,7 @@ class FAISS(VectorStore):
|
||||
faiss.normalize_L2(vector)
|
||||
self.index.add(vector)
|
||||
# Get list of index, id, and docs.
|
||||
full_info = [
|
||||
(starting_len + i, str(uuid.uuid4()), doc)
|
||||
for i, doc in enumerate(documents)
|
||||
]
|
||||
full_info = [(starting_len + i, ids[i], doc) for i, doc in enumerate(documents)]
|
||||
# Add information to docstore and index.
|
||||
self.docstore.add({_id: doc for _, _id, doc in full_info})
|
||||
index_to_id = {index: _id for index, _id, _ in full_info}
|
||||
@ -129,6 +129,7 @@ class FAISS(VectorStore):
|
||||
self,
|
||||
texts: Iterable[str],
|
||||
metadatas: Optional[List[dict]] = None,
|
||||
ids: Optional[List[str]] = None,
|
||||
**kwargs: Any,
|
||||
) -> List[str]:
|
||||
"""Run more texts through the embeddings and add to the vectorstore.
|
||||
@ -136,6 +137,7 @@ class FAISS(VectorStore):
|
||||
Args:
|
||||
texts: Iterable of strings to add to the vectorstore.
|
||||
metadatas: Optional list of metadatas associated with the texts.
|
||||
ids: Optional list of unique IDs.
|
||||
|
||||
Returns:
|
||||
List of ids from adding the texts into the vectorstore.
|
||||
@ -147,12 +149,13 @@ class FAISS(VectorStore):
|
||||
)
|
||||
# Embed and create the documents.
|
||||
embeddings = [self.embedding_function(text) for text in texts]
|
||||
return self.__add(texts, embeddings, metadatas, **kwargs)
|
||||
return self.__add(texts, embeddings, metadatas=metadatas, ids=ids, **kwargs)
|
||||
|
||||
def add_embeddings(
|
||||
self,
|
||||
text_embeddings: Iterable[Tuple[str, List[float]]],
|
||||
metadatas: Optional[List[dict]] = None,
|
||||
ids: Optional[List[str]] = None,
|
||||
**kwargs: Any,
|
||||
) -> List[str]:
|
||||
"""Run more texts through the embeddings and add to the vectorstore.
|
||||
@ -161,6 +164,7 @@ class FAISS(VectorStore):
|
||||
text_embeddings: Iterable pairs of string and embedding to
|
||||
add to the vectorstore.
|
||||
metadatas: Optional list of metadatas associated with the texts.
|
||||
ids: Optional list of unique IDs.
|
||||
|
||||
Returns:
|
||||
List of ids from adding the texts into the vectorstore.
|
||||
@ -174,7 +178,7 @@ class FAISS(VectorStore):
|
||||
|
||||
texts = [te[0] for te in text_embeddings]
|
||||
embeddings = [te[1] for te in text_embeddings]
|
||||
return self.__add(texts, embeddings, metadatas, **kwargs)
|
||||
return self.__add(texts, embeddings, metadatas=metadatas, ids=ids, **kwargs)
|
||||
|
||||
def similarity_search_with_score_by_vector(
|
||||
self, embedding: List[float], k: int = 4
|
||||
@ -346,13 +350,13 @@ class FAISS(VectorStore):
|
||||
# Merge two IndexFlatL2
|
||||
self.index.merge_from(target.index)
|
||||
|
||||
# Create new id for docs from target FAISS object
|
||||
# Get id and docs from target FAISS object
|
||||
full_info = []
|
||||
for i in target.index_to_docstore_id:
|
||||
doc = target.docstore.search(target.index_to_docstore_id[i])
|
||||
for i, target_id in target.index_to_docstore_id.items():
|
||||
doc = target.docstore.search(target_id)
|
||||
if not isinstance(doc, Document):
|
||||
raise ValueError("Document should be returned")
|
||||
full_info.append((starting_len + i, str(uuid.uuid4()), doc))
|
||||
full_info.append((starting_len + i, target_id, doc))
|
||||
|
||||
# Add information to docstore and index_to_docstore_id.
|
||||
self.docstore.add({_id: doc for _, _id, doc in full_info})
|
||||
@ -366,6 +370,7 @@ class FAISS(VectorStore):
|
||||
embeddings: List[List[float]],
|
||||
embedding: Embeddings,
|
||||
metadatas: Optional[List[dict]] = None,
|
||||
ids: Optional[List[str]] = None,
|
||||
normalize_L2: bool = False,
|
||||
**kwargs: Any,
|
||||
) -> FAISS:
|
||||
@ -376,13 +381,13 @@ class FAISS(VectorStore):
|
||||
faiss.normalize_L2(vector)
|
||||
index.add(vector)
|
||||
documents = []
|
||||
if ids is None:
|
||||
ids = [str(uuid.uuid4()) for _ in texts]
|
||||
for i, text in enumerate(texts):
|
||||
metadata = metadatas[i] if metadatas else {}
|
||||
documents.append(Document(page_content=text, metadata=metadata))
|
||||
index_to_id = {i: str(uuid.uuid4()) for i in range(len(documents))}
|
||||
docstore = InMemoryDocstore(
|
||||
{index_to_id[i]: doc for i, doc in enumerate(documents)}
|
||||
)
|
||||
index_to_id = dict(enumerate(ids))
|
||||
docstore = InMemoryDocstore(dict(zip(index_to_id.values(), documents)))
|
||||
return cls(
|
||||
embedding.embed_query,
|
||||
index,
|
||||
@ -398,6 +403,7 @@ class FAISS(VectorStore):
|
||||
texts: List[str],
|
||||
embedding: Embeddings,
|
||||
metadatas: Optional[List[dict]] = None,
|
||||
ids: Optional[List[str]] = None,
|
||||
**kwargs: Any,
|
||||
) -> FAISS:
|
||||
"""Construct FAISS wrapper from raw documents.
|
||||
@ -422,7 +428,8 @@ class FAISS(VectorStore):
|
||||
texts,
|
||||
embeddings,
|
||||
embedding,
|
||||
metadatas,
|
||||
metadatas=metadatas,
|
||||
ids=ids,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
@ -432,6 +439,7 @@ class FAISS(VectorStore):
|
||||
text_embeddings: List[Tuple[str, List[float]]],
|
||||
embedding: Embeddings,
|
||||
metadatas: Optional[List[dict]] = None,
|
||||
ids: Optional[List[str]] = None,
|
||||
**kwargs: Any,
|
||||
) -> FAISS:
|
||||
"""Construct FAISS wrapper from raw documents.
|
||||
@ -459,7 +467,8 @@ class FAISS(VectorStore):
|
||||
texts,
|
||||
embeddings,
|
||||
embedding,
|
||||
metadatas,
|
||||
metadatas=metadatas,
|
||||
ids=ids,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user