mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
Harrison/prompt layer (#1547)
Co-authored-by: Jonathan Pedoeem <jonathanped@gmail.com> Co-authored-by: AbuBakar <abubakarsohail123@gmail.com>
This commit is contained in:
parent
c844d1fd46
commit
3ee32a01ea
@ -29,3 +29,5 @@ This LLM is identical to the [OpenAI LLM](./openai), except that
|
||||
- all your requests will be logged to your PromptLayer account
|
||||
- you can add `pl_tags` when instantializing to tag your requests on PromptLayer
|
||||
|
||||
|
||||
PromptLayer also provides native wrappers for [`PromptLayerChatOpenAI`](../modules/chat/examples/promptlayer_chat_openai.ipynb)
|
||||
|
154
docs/modules/chat/examples/promptlayer_chatopenai.ipynb
Normal file
154
docs/modules/chat/examples/promptlayer_chatopenai.ipynb
Normal file
@ -0,0 +1,154 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"id": "959300d4",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# PromptLayer ChatOpenAI\n",
|
||||
"\n",
|
||||
"This example showcases how to connect to [PromptLayer](https://www.promptlayer.com) to start recording your ChatOpenAI requests."
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"id": "6a45943e",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Install PromptLayer\n",
|
||||
"The `promptlayer` package is required to use PromptLayer with OpenAI. Install `promptlayer` using pip."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "dbe09bd8",
|
||||
"metadata": {
|
||||
"vscode": {
|
||||
"languageId": "powershell"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"pip install promptlayer"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "536c1dfa",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Imports"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "c16da3b5",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"from langchain.chat_models import PromptLayerChatOpenAI\n",
|
||||
"from langchain.schema import HumanMessage"
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"id": "8564ce7d",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Set the Environment API Key\n",
|
||||
"You can create a PromptLayer API Key at [wwww.promptlayer.com](https://ww.promptlayer.com) by clicking the settings cog in the navbar.\n",
|
||||
"\n",
|
||||
"Set it as an environment variable called `PROMPTLAYER_API_KEY`."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "46ba25dc",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"os.environ[\"PROMPTLAYER_API_KEY\"] = \"**********\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"id": "bf0294de",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Use the PromptLayerOpenAI LLM like normal\n",
|
||||
"*You can optionally pass in `pl_tags` to track your requests with PromptLayer's tagging feature.*"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "3acf0069",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content='to take a nap in a cozy spot. I search around for a suitable place and finally settle on a soft cushion on the window sill. I curl up into a ball and close my eyes, relishing the warmth of the sun on my fur. As I drift off to sleep, I can hear the birds chirping outside and feel the gentle breeze blowing through the window. This is the life of a contented cat.', additional_kwargs={})"
|
||||
]
|
||||
},
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"chat = PromptLayerChatOpenAI(pl_tags=[\"langchain\"])\n",
|
||||
"chat([HumanMessage(content=\"I am a cat and I want\")])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"id": "a2d76826",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**The above request should now appear on your [PromptLayer dashboard](https://ww.promptlayer.com).**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "05e9e2fe",
|
||||
"metadata": {},
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "base",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.8.8"
|
||||
},
|
||||
"vscode": {
|
||||
"interpreter": {
|
||||
"hash": "c4fe2cd85a8d9e8baaec5340ce66faff1c77581a9f43e6c45e85e09b6fced008"
|
||||
}
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
@ -1,3 +1,4 @@
|
||||
from langchain.chat_models.openai import ChatOpenAI
|
||||
from langchain.chat_models.promptlayer_openai import PromptLayerChatOpenAI
|
||||
|
||||
__all__ = ["ChatOpenAI"]
|
||||
__all__ = ["ChatOpenAI", "PromptLayerChatOpenAI"]
|
||||
|
84
langchain/chat_models/promptlayer_openai.py
Normal file
84
langchain/chat_models/promptlayer_openai.py
Normal file
@ -0,0 +1,84 @@
|
||||
"""PromptLayer wrapper."""
|
||||
import datetime
|
||||
from typing import List, Optional
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from langchain.chat_models import ChatOpenAI
|
||||
from langchain.schema import BaseMessage, ChatResult
|
||||
|
||||
|
||||
class PromptLayerChatOpenAI(ChatOpenAI, BaseModel):
|
||||
"""Wrapper around OpenAI Chat large language models and PromptLayer.
|
||||
|
||||
To use, you should have the ``openai`` and ``promptlayer`` python
|
||||
package installed, and the environment variable ``OPENAI_API_KEY``
|
||||
and ``PROMPTLAYER_API_KEY`` set with your openAI API key and
|
||||
promptlayer key respectively.
|
||||
|
||||
All parameters that can be passed to the OpenAI LLM can also
|
||||
be passed here. The PromptLayerChatOpenAI LLM adds an extra
|
||||
``pl_tags`` parameter that can be used to tag the request.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain.chat_models import PromptLayerChatOpenAI
|
||||
openai = PromptLayerChatOpenAI(model_name="gpt-3.5-turbo")
|
||||
"""
|
||||
|
||||
pl_tags: Optional[List[str]]
|
||||
|
||||
def _generate(
|
||||
self, messages: List[BaseMessage], stop: Optional[List[str]] = None
|
||||
) -> ChatResult:
|
||||
"""Call ChatOpenAI generate and then call PromptLayer API to log the request."""
|
||||
from promptlayer.utils import get_api_key, promptlayer_api_request
|
||||
|
||||
request_start_time = datetime.datetime.now().timestamp()
|
||||
generated_responses = super()._generate(messages, stop)
|
||||
request_end_time = datetime.datetime.now().timestamp()
|
||||
message_dicts, params = super()._create_message_dicts(messages, stop)
|
||||
for i, generation in enumerate(generated_responses.generations):
|
||||
response_dict, params = super()._create_message_dicts(
|
||||
[generation.message], stop
|
||||
)
|
||||
promptlayer_api_request(
|
||||
"langchain.PromptLayerChatOpenAI",
|
||||
"langchain",
|
||||
message_dicts,
|
||||
params,
|
||||
self.pl_tags,
|
||||
response_dict,
|
||||
request_start_time,
|
||||
request_end_time,
|
||||
get_api_key(),
|
||||
)
|
||||
return generated_responses
|
||||
|
||||
async def _agenerate(
|
||||
self, messages: List[BaseMessage], stop: Optional[List[str]] = None
|
||||
) -> ChatResult:
|
||||
"""Call ChatOpenAI agenerate and then call PromptLayer to log."""
|
||||
from promptlayer.utils import get_api_key, promptlayer_api_request
|
||||
|
||||
request_start_time = datetime.datetime.now().timestamp()
|
||||
generated_responses = await super()._agenerate(messages, stop)
|
||||
request_end_time = datetime.datetime.now().timestamp()
|
||||
message_dicts, params = super()._create_message_dicts(messages, stop)
|
||||
for i, generation in enumerate(generated_responses.generations):
|
||||
response_dict, params = super()._create_message_dicts(
|
||||
[generation.message], stop
|
||||
)
|
||||
promptlayer_api_request(
|
||||
"langchain.PromptLayerChatOpenAI.async",
|
||||
"langchain",
|
||||
message_dicts,
|
||||
params,
|
||||
self.pl_tags,
|
||||
response_dict,
|
||||
request_start_time,
|
||||
request_end_time,
|
||||
get_api_key(),
|
||||
)
|
||||
return generated_responses
|
@ -18,7 +18,7 @@ from langchain.llms.modal import Modal
|
||||
from langchain.llms.nlpcloud import NLPCloud
|
||||
from langchain.llms.openai import AzureOpenAI, OpenAI, OpenAIChat
|
||||
from langchain.llms.petals import Petals
|
||||
from langchain.llms.promptlayer_openai import PromptLayerOpenAI
|
||||
from langchain.llms.promptlayer_openai import PromptLayerOpenAI, PromptLayerOpenAIChat
|
||||
from langchain.llms.self_hosted import SelfHostedPipeline
|
||||
from langchain.llms.self_hosted_hugging_face import SelfHostedHuggingFaceLLM
|
||||
from langchain.llms.stochasticai import StochasticAI
|
||||
@ -46,6 +46,7 @@ __all__ = [
|
||||
"SelfHostedPipeline",
|
||||
"SelfHostedHuggingFaceLLM",
|
||||
"PromptLayerOpenAI",
|
||||
"PromptLayerOpenAIChat",
|
||||
"StochasticAI",
|
||||
"Writer",
|
||||
]
|
||||
|
@ -4,7 +4,7 @@ from typing import List, Optional
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from langchain.llms import OpenAI
|
||||
from langchain.llms import OpenAI, OpenAIChat
|
||||
from langchain.schema import LLMResult
|
||||
|
||||
|
||||
@ -23,8 +23,8 @@ class PromptLayerOpenAI(OpenAI, BaseModel):
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain.llms import OpenAI
|
||||
openai = OpenAI(model_name="text-davinci-003")
|
||||
from langchain.llms import PromptLayerOpenAI
|
||||
openai = PromptLayerOpenAI(model_name="text-davinci-003")
|
||||
"""
|
||||
|
||||
pl_tags: Optional[List[str]]
|
||||
@ -40,14 +40,94 @@ class PromptLayerOpenAI(OpenAI, BaseModel):
|
||||
request_end_time = datetime.datetime.now().timestamp()
|
||||
for i in range(len(prompts)):
|
||||
prompt = prompts[i]
|
||||
resp = generated_responses.generations[i]
|
||||
resp = {
|
||||
"text": generated_responses.generations[i][0].text,
|
||||
"llm_output": generated_responses.llm_output,
|
||||
}
|
||||
promptlayer_api_request(
|
||||
"langchain.PromptLayerOpenAI",
|
||||
"langchain",
|
||||
[prompt],
|
||||
self._identifying_params,
|
||||
self.pl_tags,
|
||||
resp[0].text,
|
||||
resp,
|
||||
request_start_time,
|
||||
request_end_time,
|
||||
get_api_key(),
|
||||
)
|
||||
return generated_responses
|
||||
|
||||
async def _agenerate(
|
||||
self, prompts: List[str], stop: Optional[List[str]] = None
|
||||
) -> LLMResult:
|
||||
from promptlayer.utils import get_api_key, promptlayer_api_request
|
||||
|
||||
request_start_time = datetime.datetime.now().timestamp()
|
||||
generated_responses = await super()._agenerate(prompts, stop)
|
||||
request_end_time = datetime.datetime.now().timestamp()
|
||||
for i in range(len(prompts)):
|
||||
prompt = prompts[i]
|
||||
resp = {
|
||||
"text": generated_responses.generations[i][0].text,
|
||||
"llm_output": generated_responses.llm_output,
|
||||
}
|
||||
promptlayer_api_request(
|
||||
"langchain.PromptLayerOpenAI.async",
|
||||
"langchain",
|
||||
[prompt],
|
||||
self._identifying_params,
|
||||
self.pl_tags,
|
||||
resp,
|
||||
request_start_time,
|
||||
request_end_time,
|
||||
get_api_key(),
|
||||
)
|
||||
return generated_responses
|
||||
|
||||
|
||||
class PromptLayerOpenAIChat(OpenAIChat, BaseModel):
|
||||
"""Wrapper around OpenAI large language models.
|
||||
|
||||
To use, you should have the ``openai`` and ``promptlayer`` python
|
||||
package installed, and the environment variable ``OPENAI_API_KEY``
|
||||
and ``PROMPTLAYER_API_KEY`` set with your openAI API key and
|
||||
promptlayer key respectively.
|
||||
|
||||
All parameters that can be passed to the OpenAIChat LLM can also
|
||||
be passed here. The PromptLayerOpenAIChat LLM adds an extra
|
||||
``pl_tags`` parameter that can be used to tag the request.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain.llms import PromptLayerOpenAIChat
|
||||
openaichat = PromptLayerOpenAIChat(model_name="gpt-3.5-turbo")
|
||||
"""
|
||||
|
||||
pl_tags: Optional[List[str]]
|
||||
|
||||
def _generate(
|
||||
self, prompts: List[str], stop: Optional[List[str]] = None
|
||||
) -> LLMResult:
|
||||
"""Call OpenAI generate and then call PromptLayer API to log the request."""
|
||||
from promptlayer.utils import get_api_key, promptlayer_api_request
|
||||
|
||||
request_start_time = datetime.datetime.now().timestamp()
|
||||
generated_responses = super()._generate(prompts, stop)
|
||||
request_end_time = datetime.datetime.now().timestamp()
|
||||
for i in range(len(prompts)):
|
||||
prompt = prompts[i]
|
||||
resp = {
|
||||
"text": generated_responses.generations[i][0].text,
|
||||
"llm_output": generated_responses.llm_output,
|
||||
}
|
||||
promptlayer_api_request(
|
||||
"langchain.PromptLayerOpenAIChat",
|
||||
"langchain",
|
||||
[prompt],
|
||||
self._identifying_params,
|
||||
self.pl_tags,
|
||||
resp,
|
||||
request_start_time,
|
||||
request_end_time,
|
||||
get_api_key(),
|
||||
@ -66,7 +146,7 @@ class PromptLayerOpenAI(OpenAI, BaseModel):
|
||||
prompt = prompts[i]
|
||||
resp = generated_responses.generations[i]
|
||||
promptlayer_api_request(
|
||||
"langchain.PromptLayerOpenAI.async",
|
||||
"langchain.PromptLayerOpenAIChat.async",
|
||||
"langchain",
|
||||
[prompt],
|
||||
self._identifying_params,
|
||||
|
130
tests/integration_tests/chat_models/test_promptlayer_openai.py
Normal file
130
tests/integration_tests/chat_models/test_promptlayer_openai.py
Normal file
@ -0,0 +1,130 @@
|
||||
"""Test PromptLayerChatOpenAI wrapper."""
|
||||
|
||||
import pytest
|
||||
|
||||
from langchain.callbacks.base import CallbackManager
|
||||
from langchain.chat_models.promptlayer_openai import PromptLayerChatOpenAI
|
||||
from langchain.schema import (
|
||||
BaseMessage,
|
||||
ChatGeneration,
|
||||
ChatResult,
|
||||
HumanMessage,
|
||||
LLMResult,
|
||||
SystemMessage,
|
||||
)
|
||||
from tests.unit_tests.callbacks.fake_callback_handler import FakeCallbackHandler
|
||||
|
||||
|
||||
def test_promptlayer_chat_openai() -> None:
|
||||
"""Test PromptLayerChatOpenAI wrapper."""
|
||||
chat = PromptLayerChatOpenAI(max_tokens=10)
|
||||
message = HumanMessage(content="Hello")
|
||||
response = chat([message])
|
||||
assert isinstance(response, BaseMessage)
|
||||
assert isinstance(response.content, str)
|
||||
|
||||
|
||||
def test_promptlayer_chat_openai_system_message() -> None:
|
||||
"""Test PromptLayerChatOpenAI wrapper with system message."""
|
||||
chat = PromptLayerChatOpenAI(max_tokens=10)
|
||||
system_message = SystemMessage(content="You are to chat with the user.")
|
||||
human_message = HumanMessage(content="Hello")
|
||||
response = chat([system_message, human_message])
|
||||
assert isinstance(response, BaseMessage)
|
||||
assert isinstance(response.content, str)
|
||||
|
||||
|
||||
def test_promptlayer_chat_openai_generate() -> None:
|
||||
"""Test PromptLayerChatOpenAI wrapper with generate."""
|
||||
chat = PromptLayerChatOpenAI(max_tokens=10, n=2)
|
||||
message = HumanMessage(content="Hello")
|
||||
response = chat.generate([[message], [message]])
|
||||
assert isinstance(response, LLMResult)
|
||||
assert len(response.generations) == 2
|
||||
for generations in response.generations:
|
||||
assert len(generations) == 2
|
||||
for generation in generations:
|
||||
assert isinstance(generation, ChatGeneration)
|
||||
assert isinstance(generation.text, str)
|
||||
assert generation.text == generation.message.content
|
||||
|
||||
|
||||
def test_promptlayer_chat_openai_multiple_completions() -> None:
|
||||
"""Test PromptLayerChatOpenAI wrapper with multiple completions."""
|
||||
chat = PromptLayerChatOpenAI(max_tokens=10, n=5)
|
||||
message = HumanMessage(content="Hello")
|
||||
response = chat._generate([message])
|
||||
assert isinstance(response, ChatResult)
|
||||
assert len(response.generations) == 5
|
||||
for generation in response.generations:
|
||||
assert isinstance(generation.message, BaseMessage)
|
||||
assert isinstance(generation.message.content, str)
|
||||
|
||||
|
||||
def test_promptlayer_chat_openai_streaming() -> None:
|
||||
"""Test that streaming correctly invokes on_llm_new_token callback."""
|
||||
callback_handler = FakeCallbackHandler()
|
||||
callback_manager = CallbackManager([callback_handler])
|
||||
chat = PromptLayerChatOpenAI(
|
||||
max_tokens=10,
|
||||
streaming=True,
|
||||
temperature=0,
|
||||
callback_manager=callback_manager,
|
||||
verbose=True,
|
||||
)
|
||||
message = HumanMessage(content="Hello")
|
||||
response = chat([message])
|
||||
assert callback_handler.llm_streams > 0
|
||||
assert isinstance(response, BaseMessage)
|
||||
|
||||
|
||||
def test_promptlayer_chat_openai_invalid_streaming_params() -> None:
|
||||
"""Test that streaming correctly invokes on_llm_new_token callback."""
|
||||
with pytest.raises(ValueError):
|
||||
PromptLayerChatOpenAI(
|
||||
max_tokens=10,
|
||||
streaming=True,
|
||||
temperature=0,
|
||||
n=5,
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_async_promptlayer_chat_openai() -> None:
|
||||
"""Test async generation."""
|
||||
chat = PromptLayerChatOpenAI(max_tokens=10, n=2)
|
||||
message = HumanMessage(content="Hello")
|
||||
response = await chat.agenerate([[message], [message]])
|
||||
assert isinstance(response, LLMResult)
|
||||
assert len(response.generations) == 2
|
||||
for generations in response.generations:
|
||||
assert len(generations) == 2
|
||||
for generation in generations:
|
||||
assert isinstance(generation, ChatGeneration)
|
||||
assert isinstance(generation.text, str)
|
||||
assert generation.text == generation.message.content
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_async_promptlayer_chat_openai_streaming() -> None:
|
||||
"""Test that streaming correctly invokes on_llm_new_token callback."""
|
||||
callback_handler = FakeCallbackHandler()
|
||||
callback_manager = CallbackManager([callback_handler])
|
||||
chat = PromptLayerChatOpenAI(
|
||||
max_tokens=10,
|
||||
streaming=True,
|
||||
temperature=0,
|
||||
callback_manager=callback_manager,
|
||||
verbose=True,
|
||||
)
|
||||
message = HumanMessage(content="Hello")
|
||||
response = await chat.agenerate([[message], [message]])
|
||||
assert callback_handler.llm_streams > 0
|
||||
assert isinstance(response, LLMResult)
|
||||
assert len(response.generations) == 2
|
||||
for generations in response.generations:
|
||||
assert len(generations) == 1
|
||||
for generation in generations:
|
||||
assert isinstance(generation, ChatGeneration)
|
||||
assert isinstance(generation.text, str)
|
||||
assert generation.text == generation.message.content
|
@ -0,0 +1,41 @@
|
||||
"""Test PromptLayer OpenAIChat API wrapper."""
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
import pytest
|
||||
|
||||
from langchain.llms.loading import load_llm
|
||||
from langchain.llms.promptlayer_openai import PromptLayerOpenAIChat
|
||||
|
||||
|
||||
def test_promptlayer_openai_chat_call() -> None:
|
||||
"""Test valid call to promptlayer openai."""
|
||||
llm = PromptLayerOpenAIChat(max_tokens=10)
|
||||
output = llm("Say foo:")
|
||||
assert isinstance(output, str)
|
||||
|
||||
|
||||
def test_promptlayer_openai_chat_stop_valid() -> None:
|
||||
"""Test promptlayer openai stop logic on valid configuration."""
|
||||
query = "write an ordered list of five items"
|
||||
first_llm = PromptLayerOpenAIChat(stop="3", temperature=0)
|
||||
first_output = first_llm(query)
|
||||
second_llm = PromptLayerOpenAIChat(temperature=0)
|
||||
second_output = second_llm(query, stop=["3"])
|
||||
# Because it stops on new lines, shouldn't return anything
|
||||
assert first_output == second_output
|
||||
|
||||
|
||||
def test_promptlayer_openai_chat_stop_error() -> None:
|
||||
"""Test promptlayer openai stop logic on bad configuration."""
|
||||
llm = PromptLayerOpenAIChat(stop="3", temperature=0)
|
||||
with pytest.raises(ValueError):
|
||||
llm("write an ordered list of five items", stop=["\n"])
|
||||
|
||||
|
||||
def test_saving_loading_llm(tmp_path: Path) -> None:
|
||||
"""Test saving/loading an promptlayer OpenAPI LLM."""
|
||||
llm = PromptLayerOpenAIChat(max_tokens=10)
|
||||
llm.save(file_path=tmp_path / "openai.yaml")
|
||||
loaded_llm = load_llm(tmp_path / "openai.yaml")
|
||||
assert loaded_llm == llm
|
Loading…
Reference in New Issue
Block a user