mirror of
https://github.com/hwchase17/langchain
synced 2024-11-04 06:00:26 +00:00
SelfQuery support for deeplake (#7888)
Added support SelfQuery for Deeplake
This commit is contained in:
parent
c580c81cca
commit
3e7d2a1b64
@ -0,0 +1,490 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"id": "13afcae7",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# DeepLake self-querying \n",
|
||||
"\n",
|
||||
">[DeepLake](https://www.activeloop.ai) is a multimodal database for building AI applications.\n",
|
||||
"\n",
|
||||
"In the notebook we'll demo the `SelfQueryRetriever` wrapped around a DeepLake vector store. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"id": "68e75fb9",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Creating a DeepLake vectorstore\n",
|
||||
"First we'll want to create a DeepLake VectorStore and seed it with some data. We've created a small demo set of documents that contain summaries of movies.\n",
|
||||
"\n",
|
||||
"NOTE: The self-query retriever requires you to have `lark` installed (`pip install lark`). We also need the `deeplake` package."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "63a8af5b",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#!pip install lark"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "22431060-52c4-48a7-a97b-9f542b8b0928",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#!pip install 'deeplake[enterprise]'"
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"id": "83811610-7df3-4ede-b268-68a6a83ba9e2",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"We want to use `OpenAIEmbeddings` so we have to get the OpenAI API Key."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "dd01b61b-7d32-4a55-85d6-b2d2d4f18840",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"import getpass\n",
|
||||
"\n",
|
||||
"os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "cb4a5787",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.schema import Document\n",
|
||||
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
|
||||
"from langchain.vectorstores import DeepLake\n",
|
||||
"\n",
|
||||
"embeddings = OpenAIEmbeddings()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "bcbe04d9",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Your Deep Lake dataset has been successfully created!\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"-"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Dataset(path='hub://adilkhan/self_queery', tensors=['embedding', 'id', 'metadata', 'text'])\n",
|
||||
"\n",
|
||||
" tensor htype shape dtype compression\n",
|
||||
" ------- ------- ------- ------- ------- \n",
|
||||
" embedding embedding (6, 1536) float32 None \n",
|
||||
" id text (6, 1) str None \n",
|
||||
" metadata json (6, 1) str None \n",
|
||||
" text text (6, 1) str None \n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
" \r"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"docs = [\n",
|
||||
" Document(\n",
|
||||
" page_content=\"A bunch of scientists bring back dinosaurs and mayhem breaks loose\",\n",
|
||||
" metadata={\"year\": 1993, \"rating\": 7.7, \"genre\": \"science fiction\"},\n",
|
||||
" ),\n",
|
||||
" Document(\n",
|
||||
" page_content=\"Leo DiCaprio gets lost in a dream within a dream within a dream within a ...\",\n",
|
||||
" metadata={\"year\": 2010, \"director\": \"Christopher Nolan\", \"rating\": 8.2},\n",
|
||||
" ),\n",
|
||||
" Document(\n",
|
||||
" page_content=\"A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea\",\n",
|
||||
" metadata={\"year\": 2006, \"director\": \"Satoshi Kon\", \"rating\": 8.6},\n",
|
||||
" ),\n",
|
||||
" Document(\n",
|
||||
" page_content=\"A bunch of normal-sized women are supremely wholesome and some men pine after them\",\n",
|
||||
" metadata={\"year\": 2019, \"director\": \"Greta Gerwig\", \"rating\": 8.3},\n",
|
||||
" ),\n",
|
||||
" Document(\n",
|
||||
" page_content=\"Toys come alive and have a blast doing so\",\n",
|
||||
" metadata={\"year\": 1995, \"genre\": \"animated\"},\n",
|
||||
" ),\n",
|
||||
" Document(\n",
|
||||
" page_content=\"Three men walk into the Zone, three men walk out of the Zone\",\n",
|
||||
" metadata={\n",
|
||||
" \"year\": 1979,\n",
|
||||
" \"rating\": 9.9,\n",
|
||||
" \"director\": \"Andrei Tarkovsky\",\n",
|
||||
" \"genre\": \"science fiction\",\n",
|
||||
" \"rating\": 9.9,\n",
|
||||
" },\n",
|
||||
" ),\n",
|
||||
"]\n",
|
||||
"username_or_org = \"<USER_NAME_OR_ORG>\"\n",
|
||||
"vectorstore = DeepLake.from_documents(\n",
|
||||
" docs, embeddings, dataset_path=f\"hub://{username_or_org}/self_queery\"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"id": "5ecaab6d",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Creating our self-querying retriever\n",
|
||||
"Now we can instantiate our retriever. To do this we'll need to provide some information upfront about the metadata fields that our documents support and a short description of the document contents."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"id": "86e34dbf",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.llms import OpenAI\n",
|
||||
"from langchain.retrievers.self_query.base import SelfQueryRetriever\n",
|
||||
"from langchain.chains.query_constructor.base import AttributeInfo\n",
|
||||
"\n",
|
||||
"metadata_field_info = [\n",
|
||||
" AttributeInfo(\n",
|
||||
" name=\"genre\",\n",
|
||||
" description=\"The genre of the movie\",\n",
|
||||
" type=\"string or list[string]\",\n",
|
||||
" ),\n",
|
||||
" AttributeInfo(\n",
|
||||
" name=\"year\",\n",
|
||||
" description=\"The year the movie was released\",\n",
|
||||
" type=\"integer\",\n",
|
||||
" ),\n",
|
||||
" AttributeInfo(\n",
|
||||
" name=\"director\",\n",
|
||||
" description=\"The name of the movie director\",\n",
|
||||
" type=\"string\",\n",
|
||||
" ),\n",
|
||||
" AttributeInfo(\n",
|
||||
" name=\"rating\", description=\"A 1-10 rating for the movie\", type=\"float\"\n",
|
||||
" ),\n",
|
||||
"]\n",
|
||||
"document_content_description = \"Brief summary of a movie\"\n",
|
||||
"llm = OpenAI(temperature=0)\n",
|
||||
"retriever = SelfQueryRetriever.from_llm(\n",
|
||||
" llm, vectorstore, document_content_description, metadata_field_info, verbose=True\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"id": "ea9df8d4",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Testing it out\n",
|
||||
"And now we can try actually using our retriever!"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"id": "38a126e9",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"/Users/adilkhansarsen/Documents/work/LangChain/langchain/langchain/chains/llm.py:275: UserWarning: The predict_and_parse method is deprecated, instead pass an output parser directly to LLMChain.\n",
|
||||
" warnings.warn(\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"query='dinosaur' filter=None limit=None\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[Document(page_content='A bunch of scientists bring back dinosaurs and mayhem breaks loose', metadata={'year': 1993, 'rating': 7.7, 'genre': 'science fiction'}),\n",
|
||||
" Document(page_content='Toys come alive and have a blast doing so', metadata={'year': 1995, 'genre': 'animated'}),\n",
|
||||
" Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'year': 1979, 'rating': 9.9, 'director': 'Andrei Tarkovsky', 'genre': 'science fiction'}),\n",
|
||||
" Document(page_content='A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea', metadata={'year': 2006, 'director': 'Satoshi Kon', 'rating': 8.6})]"
|
||||
]
|
||||
},
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# This example only specifies a relevant query\n",
|
||||
"retriever.get_relevant_documents(\"What are some movies about dinosaurs\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"id": "fc3f1e6e",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"query=' ' filter=Comparison(comparator=<Comparator.GT: 'gt'>, attribute='rating', value=8.5) limit=None\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[Document(page_content='A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea', metadata={'year': 2006, 'director': 'Satoshi Kon', 'rating': 8.6}),\n",
|
||||
" Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'year': 1979, 'rating': 9.9, 'director': 'Andrei Tarkovsky', 'genre': 'science fiction'})]"
|
||||
]
|
||||
},
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# This example only specifies a filter\n",
|
||||
"retriever.get_relevant_documents(\"I want to watch a movie rated higher than 8.5\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"id": "b19d4da0",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"query='women' filter=Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='director', value='Greta Gerwig') limit=None\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[Document(page_content='A bunch of normal-sized women are supremely wholesome and some men pine after them', metadata={'year': 2019, 'director': 'Greta Gerwig', 'rating': 8.3})]"
|
||||
]
|
||||
},
|
||||
"execution_count": 10,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# This example specifies a query and a filter\n",
|
||||
"retriever.get_relevant_documents(\"Has Greta Gerwig directed any movies about women\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"id": "f900e40e",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"query=' ' filter=Operation(operator=<Operator.AND: 'and'>, arguments=[Comparison(comparator=<Comparator.GTE: 'gte'>, attribute='rating', value=8.5), Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='genre', value='science fiction')]) limit=None\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'year': 1979, 'rating': 9.9, 'director': 'Andrei Tarkovsky', 'genre': 'science fiction'})]"
|
||||
]
|
||||
},
|
||||
"execution_count": 11,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# This example specifies a composite filter\n",
|
||||
"retriever.get_relevant_documents(\n",
|
||||
" \"What's a highly rated (above 8.5) science fiction film?\"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"id": "12a51522",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"query='toys' filter=Operation(operator=<Operator.AND: 'and'>, arguments=[Comparison(comparator=<Comparator.GT: 'gt'>, attribute='year', value=1990), Comparison(comparator=<Comparator.LT: 'lt'>, attribute='year', value=2005), Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='genre', value='animated')]) limit=None\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[Document(page_content='Toys come alive and have a blast doing so', metadata={'year': 1995, 'genre': 'animated'})]"
|
||||
]
|
||||
},
|
||||
"execution_count": 12,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# This example specifies a query and composite filter\n",
|
||||
"retriever.get_relevant_documents(\n",
|
||||
" \"What's a movie after 1990 but before 2005 that's all about toys, and preferably is animated\"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"id": "39bd1de1-b9fe-4a98-89da-58d8a7a6ae51",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Filter k\n",
|
||||
"\n",
|
||||
"We can also use the self query retriever to specify `k`: the number of documents to fetch.\n",
|
||||
"\n",
|
||||
"We can do this by passing `enable_limit=True` to the constructor."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"id": "bff36b88-b506-4877-9c63-e5a1a8d78e64",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"retriever = SelfQueryRetriever.from_llm(\n",
|
||||
" llm,\n",
|
||||
" vectorstore,\n",
|
||||
" document_content_description,\n",
|
||||
" metadata_field_info,\n",
|
||||
" enable_limit=True,\n",
|
||||
" verbose=True,\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"id": "2758d229-4f97-499c-819f-888acaf8ee10",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"query='dinosaur' filter=None limit=2\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[Document(page_content='A bunch of scientists bring back dinosaurs and mayhem breaks loose', metadata={'year': 1993, 'rating': 7.7, 'genre': 'science fiction'}),\n",
|
||||
" Document(page_content='Toys come alive and have a blast doing so', metadata={'year': 1995, 'genre': 'animated'})]"
|
||||
]
|
||||
},
|
||||
"execution_count": 14,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# This example only specifies a relevant query\n",
|
||||
"retriever.get_relevant_documents(\"what are two movies about dinosaurs\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "c93f0847-cbd9-4c25-aed1-91588e856b5c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
@ -13,6 +13,7 @@ from langchain.chains.query_constructor.base import load_query_constructor_chain
|
||||
from langchain.chains.query_constructor.ir import StructuredQuery, Visitor
|
||||
from langchain.chains.query_constructor.schema import AttributeInfo
|
||||
from langchain.retrievers.self_query.chroma import ChromaTranslator
|
||||
from langchain.retrievers.self_query.deeplake import DeepLakeTranslator
|
||||
from langchain.retrievers.self_query.myscale import MyScaleTranslator
|
||||
from langchain.retrievers.self_query.pinecone import PineconeTranslator
|
||||
from langchain.retrievers.self_query.qdrant import QdrantTranslator
|
||||
@ -21,6 +22,7 @@ from langchain.schema import BaseRetriever, Document
|
||||
from langchain.schema.language_model import BaseLanguageModel
|
||||
from langchain.vectorstores import (
|
||||
Chroma,
|
||||
DeepLake,
|
||||
MyScale,
|
||||
Pinecone,
|
||||
Qdrant,
|
||||
@ -38,6 +40,7 @@ def _get_builtin_translator(vectorstore: VectorStore) -> Visitor:
|
||||
Weaviate: WeaviateTranslator,
|
||||
Qdrant: QdrantTranslator,
|
||||
MyScale: MyScaleTranslator,
|
||||
DeepLake: DeepLakeTranslator,
|
||||
}
|
||||
if vectorstore_cls not in BUILTIN_TRANSLATORS:
|
||||
raise ValueError(
|
||||
|
86
libs/langchain/langchain/retrievers/self_query/deeplake.py
Normal file
86
libs/langchain/langchain/retrievers/self_query/deeplake.py
Normal file
@ -0,0 +1,86 @@
|
||||
"""Logic for converting internal query language to a valid Chroma query."""
|
||||
from typing import Tuple, Union
|
||||
|
||||
from langchain.chains.query_constructor.ir import (
|
||||
Comparator,
|
||||
Comparison,
|
||||
Operation,
|
||||
Operator,
|
||||
StructuredQuery,
|
||||
Visitor,
|
||||
)
|
||||
|
||||
COMPARATOR_TO_TQL = {
|
||||
Comparator.EQ: "==",
|
||||
Comparator.GT: ">",
|
||||
Comparator.GTE: ">=",
|
||||
Comparator.LT: "<",
|
||||
Comparator.LTE: "<=",
|
||||
}
|
||||
|
||||
|
||||
OPERATOR_TO_TQL = {
|
||||
Operator.AND: "and",
|
||||
Operator.OR: "or",
|
||||
}
|
||||
|
||||
|
||||
def can_cast_to_float(string: str) -> bool:
|
||||
try:
|
||||
float(string)
|
||||
return True
|
||||
except ValueError:
|
||||
return False
|
||||
|
||||
|
||||
class DeepLakeTranslator(Visitor):
|
||||
"""Logic for converting internal query language elements to valid filters."""
|
||||
|
||||
allowed_operators = [Operator.AND, Operator.OR]
|
||||
"""Subset of allowed logical operators."""
|
||||
allowed_comparators = [
|
||||
Comparator.EQ,
|
||||
Comparator.GT,
|
||||
Comparator.GTE,
|
||||
Comparator.LT,
|
||||
Comparator.LTE,
|
||||
]
|
||||
"""Subset of allowed logical comparators."""
|
||||
|
||||
def _format_func(self, func: Union[Operator, Comparator]) -> str:
|
||||
self._validate_func(func)
|
||||
if isinstance(func, Operator):
|
||||
value = OPERATOR_TO_TQL[func.value] # type: ignore
|
||||
elif isinstance(func, Comparator):
|
||||
value = COMPARATOR_TO_TQL[func.value] # type: ignore
|
||||
return f"{value}"
|
||||
|
||||
def visit_operation(self, operation: Operation) -> str:
|
||||
args = [arg.accept(self) for arg in operation.arguments]
|
||||
operator = self._format_func(operation.operator)
|
||||
return "(" + (" " + operator + " ").join(args) + ")"
|
||||
|
||||
def visit_comparison(self, comparison: Comparison) -> str:
|
||||
comparator = self._format_func(comparison.comparator)
|
||||
values = comparison.value
|
||||
if isinstance(values, list):
|
||||
tql = []
|
||||
for value in values:
|
||||
comparison.value = value
|
||||
tql.append(self.visit_comparison(comparison))
|
||||
|
||||
return "(" + (" or ").join(tql) + ")"
|
||||
|
||||
if not can_cast_to_float(comparison.value):
|
||||
values = f"'{values}'"
|
||||
return f"metadata['{comparison.attribute}'] {comparator} {values}"
|
||||
|
||||
def visit_structured_query(
|
||||
self, structured_query: StructuredQuery
|
||||
) -> Tuple[str, dict]:
|
||||
if structured_query.filter is None:
|
||||
kwargs = {}
|
||||
else:
|
||||
tqL = f"SELECT * WHERE {structured_query.filter.accept(self)}"
|
||||
kwargs = {"tql": tqL}
|
||||
return structured_query.query, kwargs
|
@ -219,14 +219,14 @@ class DeepLake(VectorStore):
|
||||
|
||||
def _search_tql(
|
||||
self,
|
||||
tql_query: Optional[str],
|
||||
tql: Optional[str],
|
||||
exec_option: Optional[str] = None,
|
||||
**kwargs: Any,
|
||||
) -> List[Document]:
|
||||
"""Function for performing tql_search.
|
||||
|
||||
Args:
|
||||
tql_query (str): TQL Query string for direct evaluation.
|
||||
tql (str): TQL Query string for direct evaluation.
|
||||
Available only for `compute_engine` and `tensor_db`.
|
||||
exec_option (str, optional): Supports 3 ways to search.
|
||||
Could be "python", "compute_engine" or "tensor_db". Default is "python".
|
||||
@ -249,7 +249,7 @@ class DeepLake(VectorStore):
|
||||
ValueError: If return_score is True but some condition is not met.
|
||||
"""
|
||||
result = self.vectorstore.search(
|
||||
query=tql_query,
|
||||
query=tql,
|
||||
exec_option=exec_option,
|
||||
)
|
||||
metadatas = result["metadata"]
|
||||
@ -328,9 +328,9 @@ class DeepLake(VectorStore):
|
||||
ValueError: if both `embedding` and `embedding_function` are not specified.
|
||||
"""
|
||||
|
||||
if kwargs.get("tql_query"):
|
||||
if kwargs.get("tql"):
|
||||
return self._search_tql(
|
||||
tql_query=kwargs["tql_query"],
|
||||
tql=kwargs["tql"],
|
||||
exec_option=exec_option,
|
||||
return_score=return_score,
|
||||
embedding=embedding,
|
||||
@ -423,7 +423,7 @@ class DeepLake(VectorStore):
|
||||
>>> # Run tql search:
|
||||
>>> data = vector_store.similarity_search(
|
||||
... query=None,
|
||||
... tql_query="SELECT * WHERE id == <id>",
|
||||
... tql="SELECT * WHERE id == <id>",
|
||||
... exec_option="compute_engine",
|
||||
... )
|
||||
|
||||
|
@ -0,0 +1,33 @@
|
||||
from langchain.chains.query_constructor.ir import (
|
||||
Comparator,
|
||||
Comparison,
|
||||
Operation,
|
||||
Operator,
|
||||
)
|
||||
from langchain.retrievers.self_query.deeplake import DeepLakeTranslator
|
||||
|
||||
DEFAULT_TRANSLATOR = DeepLakeTranslator()
|
||||
|
||||
|
||||
def test_visit_comparison() -> None:
|
||||
comp = Comparison(comparator=Comparator.LT, attribute="foo", value=["1", "2"])
|
||||
expected = "(metadata['foo'] < 1 or metadata['foo'] < 2)"
|
||||
actual = DEFAULT_TRANSLATOR.visit_comparison(comp)
|
||||
assert expected == actual
|
||||
|
||||
|
||||
def test_visit_operation() -> None:
|
||||
op = Operation(
|
||||
operator=Operator.AND,
|
||||
arguments=[
|
||||
Comparison(comparator=Comparator.LT, attribute="foo", value=2),
|
||||
Comparison(comparator=Comparator.EQ, attribute="bar", value="baz"),
|
||||
Comparison(comparator=Comparator.LT, attribute="abc", value=["1", "2"]),
|
||||
],
|
||||
)
|
||||
expected = (
|
||||
"(metadata['foo'] < 2 and metadata['bar'] == 'baz' "
|
||||
"and (metadata['abc'] < 1 or metadata['abc'] < 2))"
|
||||
)
|
||||
actual = DEFAULT_TRANSLATOR.visit_operation(op)
|
||||
assert expected == actual
|
199
poetry.lock
generated
199
poetry.lock
generated
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user