docs: Standardize BaichuanTextEmbeddings docstrings (#24674)

- **Description:** Standardize BaichuanTextEmbeddings docstrings.
- **Issue:** the issue #21983
This commit is contained in:
maang-h 2024-07-26 00:12:00 +08:00 committed by GitHub
parent 89bcca3542
commit 38d30e285a
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -25,19 +25,34 @@ BAICHUAN_API_URL: str = "http://api.baichuan-ai.com/v1/embeddings"
class BaichuanTextEmbeddings(BaseModel, Embeddings): class BaichuanTextEmbeddings(BaseModel, Embeddings):
"""Baichuan Text Embedding models. """Baichuan Text Embedding models.
To use, you should set the environment variable ``BAICHUAN_API_KEY`` to Setup:
your API key or pass it as a named parameter to the constructor. To use, you should set the environment variable ``BAICHUAN_API_KEY`` to
your API key or pass it as a named parameter to the constructor.
Example: .. code-block:: bash
export BAICHUAN_API_KEY="your-api-key"
Instantiate:
.. code-block:: python .. code-block:: python
from langchain_community.embeddings import BaichuanTextEmbeddings from langchain_community.embeddings import BaichuanTextEmbeddings
baichuan = BaichuanTextEmbeddings(baichuan_api_key="my-api-key") embeddings = BaichuanTextEmbeddings()
"""
Embed:
.. code-block:: python
# embed the documents
vectors = embeddings.embed_documents([text1, text2, ...])
# embed the query
vectors = embeddings.embed_query(text)
""" # noqa: E501
session: Any #: :meta private: session: Any #: :meta private:
model_name: str = Field(default="Baichuan-Text-Embedding", alias="model") model_name: str = Field(default="Baichuan-Text-Embedding", alias="model")
"""The model used to embed the documents."""
baichuan_api_key: Optional[SecretStr] = Field(default=None, alias="api_key") baichuan_api_key: Optional[SecretStr] = Field(default=None, alias="api_key")
"""Automatically inferred from env var `BAICHUAN_API_KEY` if not provided.""" """Automatically inferred from env var `BAICHUAN_API_KEY` if not provided."""
chunk_size: int = 16 chunk_size: int = 16