mirror of
https://github.com/hwchase17/langchain
synced 2024-11-08 07:10:35 +00:00
AzureChatOpenAI for Azure Open AI's ChatGPT API (#1673)
Add support for Azure OpenAI's ChatGPT API, which uses ChatML markups to format messages instead of objects. Related issues: #1591, #1659
This commit is contained in:
parent
8685d53adc
commit
34840f3aee
@ -1,4 +1,5 @@
|
|||||||
|
from langchain.chat_models.azure_openai import AzureChatOpenAI
|
||||||
from langchain.chat_models.openai import ChatOpenAI
|
from langchain.chat_models.openai import ChatOpenAI
|
||||||
from langchain.chat_models.promptlayer_openai import PromptLayerChatOpenAI
|
from langchain.chat_models.promptlayer_openai import PromptLayerChatOpenAI
|
||||||
|
|
||||||
__all__ = ["ChatOpenAI", "PromptLayerChatOpenAI"]
|
__all__ = ["ChatOpenAI", "AzureChatOpenAI", "PromptLayerChatOpenAI"]
|
||||||
|
178
langchain/chat_models/azure_openai.py
Normal file
178
langchain/chat_models/azure_openai.py
Normal file
@ -0,0 +1,178 @@
|
|||||||
|
"""Azure OpenAI chat wrapper."""
|
||||||
|
from __future__ import annotations
|
||||||
|
|
||||||
|
import logging
|
||||||
|
from typing import Any, Dict, List, Mapping, Optional, Tuple
|
||||||
|
|
||||||
|
from pydantic import root_validator
|
||||||
|
|
||||||
|
from langchain.chat_models.openai import (
|
||||||
|
ChatOpenAI,
|
||||||
|
acompletion_with_retry,
|
||||||
|
)
|
||||||
|
from langchain.schema import (
|
||||||
|
AIMessage,
|
||||||
|
BaseMessage,
|
||||||
|
ChatGeneration,
|
||||||
|
ChatResult,
|
||||||
|
)
|
||||||
|
from langchain.utils import get_from_dict_or_env
|
||||||
|
|
||||||
|
logger = logging.getLogger(__file__)
|
||||||
|
|
||||||
|
|
||||||
|
def _create_chat_prompt(messages: List[BaseMessage]) -> str:
|
||||||
|
"""Create a prompt for Azure OpenAI using ChatML."""
|
||||||
|
prompt = "\n".join([message.format_chatml() for message in messages])
|
||||||
|
return prompt + "\n<|im_start|>assistant\n"
|
||||||
|
|
||||||
|
|
||||||
|
def _create_chat_result(response: Mapping[str, Any]) -> ChatResult:
|
||||||
|
generations = []
|
||||||
|
for res in response["choices"]:
|
||||||
|
message = AIMessage(content=res["text"])
|
||||||
|
gen = ChatGeneration(message=message)
|
||||||
|
generations.append(gen)
|
||||||
|
return ChatResult(generations=generations)
|
||||||
|
|
||||||
|
|
||||||
|
class AzureChatOpenAI(ChatOpenAI):
|
||||||
|
"""Wrapper around Azure OpenAI Chat large language models.
|
||||||
|
|
||||||
|
To use, you should have the ``openai`` python package installed, and the
|
||||||
|
following environment variables set:
|
||||||
|
- ``OPENAI_API_TYPE``
|
||||||
|
- ``OPENAI_API_KEY``
|
||||||
|
- ``OPENAI_API_BASE``
|
||||||
|
- ``OPENAI_API_VERSION``
|
||||||
|
|
||||||
|
Any parameters that are valid to be passed to the openai.create call can be passed
|
||||||
|
in, even if not explicitly saved on this class.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
from langchain.chat_models import AzureChatOpenAI
|
||||||
|
openai = AzureChatOpenAI(deployment_name="<your deployment name>")
|
||||||
|
"""
|
||||||
|
|
||||||
|
deployment_name: str = ""
|
||||||
|
stop: List[str] = ["<|im_end|>"]
|
||||||
|
|
||||||
|
@root_validator()
|
||||||
|
def validate_environment(cls, values: Dict) -> Dict:
|
||||||
|
"""Validate that api key and python package exists in environment."""
|
||||||
|
openai_api_key = get_from_dict_or_env(
|
||||||
|
values,
|
||||||
|
"openai_api_key",
|
||||||
|
"OPENAI_API_KEY",
|
||||||
|
)
|
||||||
|
openai_api_base = get_from_dict_or_env(
|
||||||
|
values,
|
||||||
|
"openai_api_base",
|
||||||
|
"OPENAI_API_BASE",
|
||||||
|
)
|
||||||
|
openai_api_version = get_from_dict_or_env(
|
||||||
|
values,
|
||||||
|
"openai_api_version",
|
||||||
|
"OPENAI_API_VERSION",
|
||||||
|
)
|
||||||
|
openai_api_type = get_from_dict_or_env(
|
||||||
|
values,
|
||||||
|
"openai_api_type",
|
||||||
|
"OPENAI_API_TYPE",
|
||||||
|
)
|
||||||
|
try:
|
||||||
|
import openai
|
||||||
|
|
||||||
|
openai.api_type = openai_api_type
|
||||||
|
openai.api_base = openai_api_base
|
||||||
|
openai.api_version = openai_api_version
|
||||||
|
openai.api_key = openai_api_key
|
||||||
|
except ImportError:
|
||||||
|
raise ValueError(
|
||||||
|
"Could not import openai python package. "
|
||||||
|
"Please it install it with `pip install openai`."
|
||||||
|
)
|
||||||
|
try:
|
||||||
|
values["client"] = openai.Completion
|
||||||
|
except AttributeError:
|
||||||
|
raise ValueError(
|
||||||
|
"`openai` has no `Completion` attribute, this is likely "
|
||||||
|
"due to an old version of the openai package. Try upgrading it "
|
||||||
|
"with `pip install --upgrade openai`."
|
||||||
|
)
|
||||||
|
if values["n"] < 1:
|
||||||
|
raise ValueError("n must be at least 1.")
|
||||||
|
if values["n"] > 1 and values["streaming"]:
|
||||||
|
raise ValueError("n must be 1 when streaming.")
|
||||||
|
return values
|
||||||
|
|
||||||
|
@property
|
||||||
|
def _default_params(self) -> Dict[str, Any]:
|
||||||
|
"""Get the default parameters for calling OpenAI API."""
|
||||||
|
return {
|
||||||
|
**super()._default_params,
|
||||||
|
"stop": self.stop,
|
||||||
|
}
|
||||||
|
|
||||||
|
def _generate(
|
||||||
|
self, messages: List[BaseMessage], stop: Optional[List[str]] = None
|
||||||
|
) -> ChatResult:
|
||||||
|
prompt, params = self._create_prompt(messages, stop)
|
||||||
|
if self.streaming:
|
||||||
|
inner_completion = ""
|
||||||
|
params["stream"] = True
|
||||||
|
for stream_resp in self.completion_with_retry(prompt=prompt, **params):
|
||||||
|
token = stream_resp["choices"][0]["delta"].get("text", "")
|
||||||
|
inner_completion += token
|
||||||
|
self.callback_manager.on_llm_new_token(
|
||||||
|
token,
|
||||||
|
verbose=self.verbose,
|
||||||
|
)
|
||||||
|
message = AIMessage(content=inner_completion)
|
||||||
|
return ChatResult(generations=[ChatGeneration(message=message)])
|
||||||
|
response = self.completion_with_retry(prompt=prompt, **params)
|
||||||
|
return _create_chat_result(response)
|
||||||
|
|
||||||
|
def _create_prompt(
|
||||||
|
self, messages: List[BaseMessage], stop: Optional[List[str]]
|
||||||
|
) -> Tuple[str, Dict[str, Any]]:
|
||||||
|
params: Dict[str, Any] = {
|
||||||
|
**{"model": self.model_name, "engine": self.deployment_name},
|
||||||
|
**self._default_params,
|
||||||
|
}
|
||||||
|
if stop is not None:
|
||||||
|
if "stop" in params:
|
||||||
|
raise ValueError("`stop` found in both the input and default params.")
|
||||||
|
params["stop"] = stop
|
||||||
|
prompt = _create_chat_prompt(messages)
|
||||||
|
return prompt, params
|
||||||
|
|
||||||
|
async def _agenerate(
|
||||||
|
self, messages: List[BaseMessage], stop: Optional[List[str]] = None
|
||||||
|
) -> ChatResult:
|
||||||
|
prompt, params = self._create_prompt(messages, stop)
|
||||||
|
if self.streaming:
|
||||||
|
inner_completion = ""
|
||||||
|
params["stream"] = True
|
||||||
|
async for stream_resp in await acompletion_with_retry(
|
||||||
|
self, prompt=prompt, **params
|
||||||
|
):
|
||||||
|
token = stream_resp["choices"][0]["delta"].get("text", "")
|
||||||
|
inner_completion += token
|
||||||
|
if self.callback_manager.is_async:
|
||||||
|
await self.callback_manager.on_llm_new_token(
|
||||||
|
token,
|
||||||
|
verbose=self.verbose,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
self.callback_manager.on_llm_new_token(
|
||||||
|
token,
|
||||||
|
verbose=self.verbose,
|
||||||
|
)
|
||||||
|
message = AIMessage(content=inner_completion)
|
||||||
|
return ChatResult(generations=[ChatGeneration(message=message)])
|
||||||
|
else:
|
||||||
|
response = await acompletion_with_retry(self, prompt=prompt, **params)
|
||||||
|
return _create_chat_result(response)
|
@ -60,6 +60,9 @@ class BaseMessage(BaseModel):
|
|||||||
content: str
|
content: str
|
||||||
additional_kwargs: dict = Field(default_factory=dict)
|
additional_kwargs: dict = Field(default_factory=dict)
|
||||||
|
|
||||||
|
def format_chatml(self) -> str:
|
||||||
|
raise NotImplementedError()
|
||||||
|
|
||||||
@property
|
@property
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
def type(self) -> str:
|
def type(self) -> str:
|
||||||
@ -69,6 +72,9 @@ class BaseMessage(BaseModel):
|
|||||||
class HumanMessage(BaseMessage):
|
class HumanMessage(BaseMessage):
|
||||||
"""Type of message that is spoken by the human."""
|
"""Type of message that is spoken by the human."""
|
||||||
|
|
||||||
|
def format_chatml(self) -> str:
|
||||||
|
return f"<|im_start|>user\n{self.content}\n<|im_end|>"
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def type(self) -> str:
|
def type(self) -> str:
|
||||||
"""Type of the message, used for serialization."""
|
"""Type of the message, used for serialization."""
|
||||||
@ -78,6 +84,9 @@ class HumanMessage(BaseMessage):
|
|||||||
class AIMessage(BaseMessage):
|
class AIMessage(BaseMessage):
|
||||||
"""Type of message that is spoken by the AI."""
|
"""Type of message that is spoken by the AI."""
|
||||||
|
|
||||||
|
def format_chatml(self) -> str:
|
||||||
|
return f"<|im_start|>assistant\n{self.content}\n<|im_end|>"
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def type(self) -> str:
|
def type(self) -> str:
|
||||||
"""Type of the message, used for serialization."""
|
"""Type of the message, used for serialization."""
|
||||||
@ -87,6 +96,9 @@ class AIMessage(BaseMessage):
|
|||||||
class SystemMessage(BaseMessage):
|
class SystemMessage(BaseMessage):
|
||||||
"""Type of message that is a system message."""
|
"""Type of message that is a system message."""
|
||||||
|
|
||||||
|
def format_chatml(self) -> str:
|
||||||
|
return f"<|im_start|>system\n{self.content}\n<|im_end|>"
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def type(self) -> str:
|
def type(self) -> str:
|
||||||
"""Type of the message, used for serialization."""
|
"""Type of the message, used for serialization."""
|
||||||
@ -98,6 +110,9 @@ class ChatMessage(BaseMessage):
|
|||||||
|
|
||||||
role: str
|
role: str
|
||||||
|
|
||||||
|
def format_chatml(self) -> str:
|
||||||
|
return f"<|im_start|>{self.role}\n{self.content}\n<|im_end|>"
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def type(self) -> str:
|
def type(self) -> str:
|
||||||
"""Type of the message, used for serialization."""
|
"""Type of the message, used for serialization."""
|
||||||
|
Loading…
Reference in New Issue
Block a user