mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
added support for inference from Model Garden (#9367)
#8850 --------- Co-authored-by: Leonid Kuligin <kuligin@google.com>
This commit is contained in:
parent
54a8df87b9
commit
30239b3025
@ -206,6 +206,68 @@
|
||||
"\n",
|
||||
"llm_chain.run(question)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Using models deployed on Vertex Model Garden"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Vertex Model Garden [exposes](https://cloud.google.com/vertex-ai/docs/start/explore-models) open-sourced models that can be deployed and served on Vertex AI. If you have successfully deployed a model from Vertex Model Garden, you can find a corresponding Vertex AI [endpoint](https://cloud.google.com/vertex-ai/docs/general/deployment#what_happens_when_you_deploy_a_model) in the console or via API."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.llms import VertexAIModelGarden"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"llm_oss = VertexAIModelGarden(\n",
|
||||
" project=\"YOUR PROJECT\",\n",
|
||||
" endpoint_id=\"YOUR ENDPOINT_ID\"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"llm_oss(\"What is the meaning of life?\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"You can also use it as a chain:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"llm_oss_chain = LLMChain(prompt=prompt, llm=llm_oss(\"What is the meaning of life?\")\n",
|
||||
")\n",
|
||||
"llm_oss_chain.run(question)"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
|
@ -81,7 +81,7 @@ from langchain.llms.symblai_nebula import Nebula
|
||||
from langchain.llms.textgen import TextGen
|
||||
from langchain.llms.titan_takeoff import TitanTakeoff
|
||||
from langchain.llms.tongyi import Tongyi
|
||||
from langchain.llms.vertexai import VertexAI
|
||||
from langchain.llms.vertexai import VertexAI, VertexAIModelGarden
|
||||
from langchain.llms.vllm import VLLM, VLLMOpenAI
|
||||
from langchain.llms.writer import Writer
|
||||
from langchain.llms.xinference import Xinference
|
||||
@ -152,6 +152,7 @@ __all__ = [
|
||||
"TitanTakeoff",
|
||||
"Tongyi",
|
||||
"VertexAI",
|
||||
"VertexAIModelGarden",
|
||||
"VLLM",
|
||||
"VLLMOpenAI",
|
||||
"Writer",
|
||||
@ -217,6 +218,7 @@ type_to_cls_dict: Dict[str, Type[BaseLLM]] = {
|
||||
"tongyi": Tongyi,
|
||||
"titan_takeoff": TitanTakeoff,
|
||||
"vertexai": VertexAI,
|
||||
"vertexai_model_garden": VertexAIModelGarden,
|
||||
"openllm": OpenLLM,
|
||||
"openllm_client": OpenLLM,
|
||||
"vllm": VLLM,
|
||||
|
@ -11,12 +11,17 @@ from langchain.callbacks.manager import (
|
||||
from langchain.llms.base import LLM, create_base_retry_decorator
|
||||
from langchain.llms.utils import enforce_stop_tokens
|
||||
from langchain.pydantic_v1 import BaseModel, root_validator
|
||||
from langchain.schema import (
|
||||
Generation,
|
||||
LLMResult,
|
||||
)
|
||||
from langchain.utilities.vertexai import (
|
||||
init_vertexai,
|
||||
raise_vertex_import_error,
|
||||
)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from google.cloud.aiplatform.gapic import PredictionServiceClient
|
||||
from vertexai.language_models._language_models import _LanguageModel
|
||||
|
||||
|
||||
@ -57,10 +62,40 @@ def completion_with_retry(llm: VertexAI, *args: Any, **kwargs: Any) -> Any:
|
||||
return _completion_with_retry(*args, **kwargs)
|
||||
|
||||
|
||||
class _VertexAICommon(BaseModel):
|
||||
class _VertexAIBase(BaseModel):
|
||||
project: Optional[str] = None
|
||||
"The default GCP project to use when making Vertex API calls."
|
||||
location: str = "us-central1"
|
||||
"The default location to use when making API calls."
|
||||
request_parallelism: int = 5
|
||||
"The amount of parallelism allowed for requests issued to VertexAI models. "
|
||||
"Default is 5."
|
||||
max_retries: int = 6
|
||||
"""The maximum number of retries to make when generating."""
|
||||
task_executor: ClassVar[Optional[Executor]] = None
|
||||
stop: Optional[List[str]] = None
|
||||
"Optional list of stop words to use when generating."
|
||||
model_name: Optional[str] = None
|
||||
"Underlying model name."
|
||||
|
||||
def _enforce_stop_words(self, text: str, stop: Optional[List[str]] = None) -> str:
|
||||
if stop is None and self.stop is not None:
|
||||
stop = self.stop
|
||||
if stop:
|
||||
return enforce_stop_tokens(text, stop)
|
||||
return text
|
||||
|
||||
@classmethod
|
||||
def _get_task_executor(cls, request_parallelism: int = 5) -> Executor:
|
||||
if cls.task_executor is None:
|
||||
cls.task_executor = ThreadPoolExecutor(max_workers=request_parallelism)
|
||||
return cls.task_executor
|
||||
|
||||
|
||||
class _VertexAICommon(_VertexAIBase):
|
||||
client: "_LanguageModel" = None #: :meta private:
|
||||
model_name: str
|
||||
"Model name to use."
|
||||
"Underlying model name."
|
||||
temperature: float = 0.0
|
||||
"Sampling temperature, it controls the degree of randomness in token selection."
|
||||
max_output_tokens: int = 128
|
||||
@ -71,27 +106,20 @@ class _VertexAICommon(BaseModel):
|
||||
top_k: int = 40
|
||||
"How the model selects tokens for output, the next token is selected from "
|
||||
"among the top-k most probable tokens. Top-k is ignored for Codey models."
|
||||
stop: Optional[List[str]] = None
|
||||
"Optional list of stop words to use when generating."
|
||||
project: Optional[str] = None
|
||||
"The default GCP project to use when making Vertex API calls."
|
||||
location: str = "us-central1"
|
||||
"The default location to use when making API calls."
|
||||
credentials: Any = None
|
||||
"The default custom credentials (google.auth.credentials.Credentials) to use "
|
||||
"when making API calls. If not provided, credentials will be ascertained from "
|
||||
"the environment."
|
||||
request_parallelism: int = 5
|
||||
"The amount of parallelism allowed for requests issued to VertexAI models. "
|
||||
"Default is 5."
|
||||
max_retries: int = 6
|
||||
"""The maximum number of retries to make when generating."""
|
||||
task_executor: ClassVar[Optional[Executor]] = None
|
||||
|
||||
@property
|
||||
def is_codey_model(self) -> bool:
|
||||
return is_codey_model(self.model_name)
|
||||
|
||||
@property
|
||||
def _identifying_params(self) -> Dict[str, Any]:
|
||||
"""Get the identifying parameters."""
|
||||
return {**{"model_name": self.model_name}, **self._default_params}
|
||||
|
||||
@property
|
||||
def _default_params(self) -> Dict[str, Any]:
|
||||
if self.is_codey_model:
|
||||
@ -114,28 +142,10 @@ class _VertexAICommon(BaseModel):
|
||||
res = completion_with_retry(self, prompt, **params) # type: ignore
|
||||
return self._enforce_stop_words(res.text, stop)
|
||||
|
||||
def _enforce_stop_words(self, text: str, stop: Optional[List[str]] = None) -> str:
|
||||
if stop is None and self.stop is not None:
|
||||
stop = self.stop
|
||||
if stop:
|
||||
return enforce_stop_tokens(text, stop)
|
||||
return text
|
||||
|
||||
@property
|
||||
def _identifying_params(self) -> Dict[str, Any]:
|
||||
"""Get the identifying parameters."""
|
||||
return {**{"model_name": self.model_name}, **self._default_params}
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
return "vertexai"
|
||||
|
||||
@classmethod
|
||||
def _get_task_executor(cls, request_parallelism: int = 5) -> Executor:
|
||||
if cls.task_executor is None:
|
||||
cls.task_executor = ThreadPoolExecutor(max_workers=request_parallelism)
|
||||
return cls.task_executor
|
||||
|
||||
@classmethod
|
||||
def _try_init_vertexai(cls, values: Dict) -> None:
|
||||
allowed_params = ["project", "location", "credentials"]
|
||||
@ -176,27 +186,6 @@ class VertexAI(_VertexAICommon, LLM):
|
||||
raise_vertex_import_error()
|
||||
return values
|
||||
|
||||
async def _acall(
|
||||
self,
|
||||
prompt: str,
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> str:
|
||||
"""Call Vertex model to get predictions based on the prompt.
|
||||
|
||||
Args:
|
||||
prompt: The prompt to pass into the model.
|
||||
stop: A list of stop words (optional).
|
||||
run_manager: A callback manager for async interaction with LLMs.
|
||||
|
||||
Returns:
|
||||
The string generated by the model.
|
||||
"""
|
||||
return await asyncio.wrap_future(
|
||||
self._get_task_executor().submit(self._predict, prompt, stop)
|
||||
)
|
||||
|
||||
def _call(
|
||||
self,
|
||||
prompt: str,
|
||||
@ -215,3 +204,145 @@ class VertexAI(_VertexAICommon, LLM):
|
||||
The string generated by the model.
|
||||
"""
|
||||
return self._predict(prompt, stop, **kwargs)
|
||||
|
||||
async def _acall(
|
||||
self,
|
||||
prompt: str,
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> str:
|
||||
"""Call Vertex model to get predictions based on the prompt.
|
||||
|
||||
Args:
|
||||
prompt: The prompt to pass into the model.
|
||||
stop: A list of stop words (optional).
|
||||
run_manager: A callback manager for async interaction with LLMs.
|
||||
|
||||
Returns:
|
||||
The string generated by the model.
|
||||
"""
|
||||
return await asyncio.wrap_future(
|
||||
self._get_task_executor().submit(self._call, prompt, stop)
|
||||
)
|
||||
|
||||
|
||||
class VertexAIModelGarden(_VertexAIBase, LLM):
|
||||
"""Large language models served from Vertex AI Model Garden."""
|
||||
|
||||
client: "PredictionServiceClient" = None #: :meta private:
|
||||
endpoint_id: str
|
||||
"A name of an endpoint where the model has been deployed."
|
||||
allowed_model_args: Optional[List[str]] = None
|
||||
"""Allowed optional args to be passed to the model."""
|
||||
prompt_arg: str = "prompt"
|
||||
result_arg: str = "generated_text"
|
||||
|
||||
@root_validator()
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
"""Validate that the python package exists in environment."""
|
||||
try:
|
||||
from google.cloud.aiplatform.gapic import PredictionServiceClient
|
||||
except ImportError:
|
||||
raise_vertex_import_error()
|
||||
|
||||
if values["project"] is None:
|
||||
raise ValueError(
|
||||
"A GCP project should be provided to run inference on Model Garden!"
|
||||
)
|
||||
|
||||
client_options = {
|
||||
"api_endpoint": f"{values['location']}-aiplatform.googleapis.com"
|
||||
}
|
||||
values["client"] = PredictionServiceClient(client_options=client_options)
|
||||
return values
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
return "vertexai_model_garden"
|
||||
|
||||
def _call(
|
||||
self,
|
||||
prompt: str,
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> str:
|
||||
"""Call Vertex model to get predictions based on the prompt.
|
||||
|
||||
Args:
|
||||
prompt: The prompt to pass into the model.
|
||||
stop: A list of stop words (optional).
|
||||
run_manager: A Callbackmanager for LLM run, optional.
|
||||
|
||||
Returns:
|
||||
The string generated by the model.
|
||||
"""
|
||||
result = self._generate(
|
||||
prompts=[prompt], stop=stop, run_manager=run_manager, **kwargs
|
||||
)
|
||||
return result.generations[0][0].text
|
||||
|
||||
def _generate(
|
||||
self,
|
||||
prompts: List[str],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> LLMResult:
|
||||
"""Run the LLM on the given prompt and input."""
|
||||
try:
|
||||
from google.protobuf import json_format
|
||||
from google.protobuf.struct_pb2 import Value
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"protobuf package not found, please install it with"
|
||||
" `pip install protobuf`"
|
||||
)
|
||||
|
||||
instances = []
|
||||
for prompt in prompts:
|
||||
if self.allowed_model_args:
|
||||
instance = {
|
||||
k: v for k, v in kwargs.items() if k in self.allowed_model_args
|
||||
}
|
||||
else:
|
||||
instance = {}
|
||||
instance[self.prompt_arg] = prompt
|
||||
instances.append(instance)
|
||||
|
||||
predict_instances = [
|
||||
json_format.ParseDict(instance_dict, Value()) for instance_dict in instances
|
||||
]
|
||||
|
||||
endpoint = self.client.endpoint_path(
|
||||
project=self.project, location=self.location, endpoint=self.endpoint_id
|
||||
)
|
||||
response = self.client.predict(endpoint=endpoint, instances=predict_instances)
|
||||
generations: List[List[Generation]] = []
|
||||
for result in response.predictions:
|
||||
generations.append(
|
||||
[Generation(text=prediction[self.result_arg]) for prediction in result]
|
||||
)
|
||||
return LLMResult(generations=generations)
|
||||
|
||||
async def _acall(
|
||||
self,
|
||||
prompt: str,
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> str:
|
||||
"""Call Vertex model to get predictions based on the prompt.
|
||||
|
||||
Args:
|
||||
prompt: The prompt to pass into the model.
|
||||
stop: A list of stop words (optional).
|
||||
run_manager: A callback manager for async interaction with LLMs.
|
||||
|
||||
Returns:
|
||||
The string generated by the model.
|
||||
"""
|
||||
return await asyncio.wrap_future(
|
||||
self._get_task_executor().submit(self._call, prompt, stop)
|
||||
)
|
||||
|
@ -7,7 +7,10 @@ pip install google-cloud-aiplatform>=1.25.0
|
||||
Your end-user credentials would be used to make the calls (make sure you've run
|
||||
`gcloud auth login` first).
|
||||
"""
|
||||
from langchain.llms import VertexAI
|
||||
import os
|
||||
|
||||
from langchain.llms import VertexAI, VertexAIModelGarden
|
||||
from langchain.schema import LLMResult
|
||||
|
||||
|
||||
def test_vertex_call() -> None:
|
||||
@ -16,3 +19,34 @@ def test_vertex_call() -> None:
|
||||
assert isinstance(output, str)
|
||||
assert llm._llm_type == "vertexai"
|
||||
assert llm.model_name == llm.client._model_id
|
||||
|
||||
|
||||
def test_model_garden() -> None:
|
||||
"""In order to run this test, you should provide an endpoint name.
|
||||
|
||||
Example:
|
||||
export ENDPOINT_ID=...
|
||||
export PROJECT=...
|
||||
"""
|
||||
endpoint_id = os.environ["ENDPOINT_ID"]
|
||||
project = os.environ["PROJECT"]
|
||||
llm = VertexAIModelGarden(endpoint_id=endpoint_id, project=project)
|
||||
output = llm("What is the meaning of life?")
|
||||
print(output)
|
||||
assert isinstance(output, str)
|
||||
assert llm._llm_type == "vertexai_model_garden"
|
||||
|
||||
|
||||
def test_model_garden_batch() -> None:
|
||||
"""In order to run this test, you should provide an endpoint name.
|
||||
|
||||
Example:
|
||||
export ENDPOINT_ID=...
|
||||
export PROJECT=...
|
||||
"""
|
||||
endpoint_id = os.environ["ENDPOINT_ID"]
|
||||
project = os.environ["PROJECT"]
|
||||
llm = VertexAIModelGarden(endpoint_id=endpoint_id, project=project)
|
||||
output = llm._generate(["What is the meaning of life?", "How much is 2+2"])
|
||||
assert isinstance(output, LLMResult)
|
||||
assert len(output.generations) == 2
|
||||
|
Loading…
Reference in New Issue
Block a user