added support for inference from Model Garden (#9367)

#8850

---------

Co-authored-by: Leonid Kuligin <kuligin@google.com>
This commit is contained in:
Leonid Kuligin 2023-09-02 00:58:21 +02:00 committed by GitHub
parent 54a8df87b9
commit 30239b3025
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 284 additions and 55 deletions

View File

@ -206,6 +206,68 @@
"\n",
"llm_chain.run(question)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Using models deployed on Vertex Model Garden"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Vertex Model Garden [exposes](https://cloud.google.com/vertex-ai/docs/start/explore-models) open-sourced models that can be deployed and served on Vertex AI. If you have successfully deployed a model from Vertex Model Garden, you can find a corresponding Vertex AI [endpoint](https://cloud.google.com/vertex-ai/docs/general/deployment#what_happens_when_you_deploy_a_model) in the console or via API."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.llms import VertexAIModelGarden"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"llm_oss = VertexAIModelGarden(\n",
" project=\"YOUR PROJECT\",\n",
" endpoint_id=\"YOUR ENDPOINT_ID\"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"llm_oss(\"What is the meaning of life?\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can also use it as a chain:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"llm_oss_chain = LLMChain(prompt=prompt, llm=llm_oss(\"What is the meaning of life?\")\n",
")\n",
"llm_oss_chain.run(question)"
]
}
],
"metadata": {

View File

@ -81,7 +81,7 @@ from langchain.llms.symblai_nebula import Nebula
from langchain.llms.textgen import TextGen
from langchain.llms.titan_takeoff import TitanTakeoff
from langchain.llms.tongyi import Tongyi
from langchain.llms.vertexai import VertexAI
from langchain.llms.vertexai import VertexAI, VertexAIModelGarden
from langchain.llms.vllm import VLLM, VLLMOpenAI
from langchain.llms.writer import Writer
from langchain.llms.xinference import Xinference
@ -152,6 +152,7 @@ __all__ = [
"TitanTakeoff",
"Tongyi",
"VertexAI",
"VertexAIModelGarden",
"VLLM",
"VLLMOpenAI",
"Writer",
@ -217,6 +218,7 @@ type_to_cls_dict: Dict[str, Type[BaseLLM]] = {
"tongyi": Tongyi,
"titan_takeoff": TitanTakeoff,
"vertexai": VertexAI,
"vertexai_model_garden": VertexAIModelGarden,
"openllm": OpenLLM,
"openllm_client": OpenLLM,
"vllm": VLLM,

View File

@ -11,12 +11,17 @@ from langchain.callbacks.manager import (
from langchain.llms.base import LLM, create_base_retry_decorator
from langchain.llms.utils import enforce_stop_tokens
from langchain.pydantic_v1 import BaseModel, root_validator
from langchain.schema import (
Generation,
LLMResult,
)
from langchain.utilities.vertexai import (
init_vertexai,
raise_vertex_import_error,
)
if TYPE_CHECKING:
from google.cloud.aiplatform.gapic import PredictionServiceClient
from vertexai.language_models._language_models import _LanguageModel
@ -57,10 +62,40 @@ def completion_with_retry(llm: VertexAI, *args: Any, **kwargs: Any) -> Any:
return _completion_with_retry(*args, **kwargs)
class _VertexAICommon(BaseModel):
class _VertexAIBase(BaseModel):
project: Optional[str] = None
"The default GCP project to use when making Vertex API calls."
location: str = "us-central1"
"The default location to use when making API calls."
request_parallelism: int = 5
"The amount of parallelism allowed for requests issued to VertexAI models. "
"Default is 5."
max_retries: int = 6
"""The maximum number of retries to make when generating."""
task_executor: ClassVar[Optional[Executor]] = None
stop: Optional[List[str]] = None
"Optional list of stop words to use when generating."
model_name: Optional[str] = None
"Underlying model name."
def _enforce_stop_words(self, text: str, stop: Optional[List[str]] = None) -> str:
if stop is None and self.stop is not None:
stop = self.stop
if stop:
return enforce_stop_tokens(text, stop)
return text
@classmethod
def _get_task_executor(cls, request_parallelism: int = 5) -> Executor:
if cls.task_executor is None:
cls.task_executor = ThreadPoolExecutor(max_workers=request_parallelism)
return cls.task_executor
class _VertexAICommon(_VertexAIBase):
client: "_LanguageModel" = None #: :meta private:
model_name: str
"Model name to use."
"Underlying model name."
temperature: float = 0.0
"Sampling temperature, it controls the degree of randomness in token selection."
max_output_tokens: int = 128
@ -71,27 +106,20 @@ class _VertexAICommon(BaseModel):
top_k: int = 40
"How the model selects tokens for output, the next token is selected from "
"among the top-k most probable tokens. Top-k is ignored for Codey models."
stop: Optional[List[str]] = None
"Optional list of stop words to use when generating."
project: Optional[str] = None
"The default GCP project to use when making Vertex API calls."
location: str = "us-central1"
"The default location to use when making API calls."
credentials: Any = None
"The default custom credentials (google.auth.credentials.Credentials) to use "
"when making API calls. If not provided, credentials will be ascertained from "
"the environment."
request_parallelism: int = 5
"The amount of parallelism allowed for requests issued to VertexAI models. "
"Default is 5."
max_retries: int = 6
"""The maximum number of retries to make when generating."""
task_executor: ClassVar[Optional[Executor]] = None
@property
def is_codey_model(self) -> bool:
return is_codey_model(self.model_name)
@property
def _identifying_params(self) -> Dict[str, Any]:
"""Get the identifying parameters."""
return {**{"model_name": self.model_name}, **self._default_params}
@property
def _default_params(self) -> Dict[str, Any]:
if self.is_codey_model:
@ -114,28 +142,10 @@ class _VertexAICommon(BaseModel):
res = completion_with_retry(self, prompt, **params) # type: ignore
return self._enforce_stop_words(res.text, stop)
def _enforce_stop_words(self, text: str, stop: Optional[List[str]] = None) -> str:
if stop is None and self.stop is not None:
stop = self.stop
if stop:
return enforce_stop_tokens(text, stop)
return text
@property
def _identifying_params(self) -> Dict[str, Any]:
"""Get the identifying parameters."""
return {**{"model_name": self.model_name}, **self._default_params}
@property
def _llm_type(self) -> str:
return "vertexai"
@classmethod
def _get_task_executor(cls, request_parallelism: int = 5) -> Executor:
if cls.task_executor is None:
cls.task_executor = ThreadPoolExecutor(max_workers=request_parallelism)
return cls.task_executor
@classmethod
def _try_init_vertexai(cls, values: Dict) -> None:
allowed_params = ["project", "location", "credentials"]
@ -176,27 +186,6 @@ class VertexAI(_VertexAICommon, LLM):
raise_vertex_import_error()
return values
async def _acall(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Call Vertex model to get predictions based on the prompt.
Args:
prompt: The prompt to pass into the model.
stop: A list of stop words (optional).
run_manager: A callback manager for async interaction with LLMs.
Returns:
The string generated by the model.
"""
return await asyncio.wrap_future(
self._get_task_executor().submit(self._predict, prompt, stop)
)
def _call(
self,
prompt: str,
@ -215,3 +204,145 @@ class VertexAI(_VertexAICommon, LLM):
The string generated by the model.
"""
return self._predict(prompt, stop, **kwargs)
async def _acall(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Call Vertex model to get predictions based on the prompt.
Args:
prompt: The prompt to pass into the model.
stop: A list of stop words (optional).
run_manager: A callback manager for async interaction with LLMs.
Returns:
The string generated by the model.
"""
return await asyncio.wrap_future(
self._get_task_executor().submit(self._call, prompt, stop)
)
class VertexAIModelGarden(_VertexAIBase, LLM):
"""Large language models served from Vertex AI Model Garden."""
client: "PredictionServiceClient" = None #: :meta private:
endpoint_id: str
"A name of an endpoint where the model has been deployed."
allowed_model_args: Optional[List[str]] = None
"""Allowed optional args to be passed to the model."""
prompt_arg: str = "prompt"
result_arg: str = "generated_text"
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that the python package exists in environment."""
try:
from google.cloud.aiplatform.gapic import PredictionServiceClient
except ImportError:
raise_vertex_import_error()
if values["project"] is None:
raise ValueError(
"A GCP project should be provided to run inference on Model Garden!"
)
client_options = {
"api_endpoint": f"{values['location']}-aiplatform.googleapis.com"
}
values["client"] = PredictionServiceClient(client_options=client_options)
return values
@property
def _llm_type(self) -> str:
return "vertexai_model_garden"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Call Vertex model to get predictions based on the prompt.
Args:
prompt: The prompt to pass into the model.
stop: A list of stop words (optional).
run_manager: A Callbackmanager for LLM run, optional.
Returns:
The string generated by the model.
"""
result = self._generate(
prompts=[prompt], stop=stop, run_manager=run_manager, **kwargs
)
return result.generations[0][0].text
def _generate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> LLMResult:
"""Run the LLM on the given prompt and input."""
try:
from google.protobuf import json_format
from google.protobuf.struct_pb2 import Value
except ImportError:
raise ImportError(
"protobuf package not found, please install it with"
" `pip install protobuf`"
)
instances = []
for prompt in prompts:
if self.allowed_model_args:
instance = {
k: v for k, v in kwargs.items() if k in self.allowed_model_args
}
else:
instance = {}
instance[self.prompt_arg] = prompt
instances.append(instance)
predict_instances = [
json_format.ParseDict(instance_dict, Value()) for instance_dict in instances
]
endpoint = self.client.endpoint_path(
project=self.project, location=self.location, endpoint=self.endpoint_id
)
response = self.client.predict(endpoint=endpoint, instances=predict_instances)
generations: List[List[Generation]] = []
for result in response.predictions:
generations.append(
[Generation(text=prediction[self.result_arg]) for prediction in result]
)
return LLMResult(generations=generations)
async def _acall(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Call Vertex model to get predictions based on the prompt.
Args:
prompt: The prompt to pass into the model.
stop: A list of stop words (optional).
run_manager: A callback manager for async interaction with LLMs.
Returns:
The string generated by the model.
"""
return await asyncio.wrap_future(
self._get_task_executor().submit(self._call, prompt, stop)
)

View File

@ -7,7 +7,10 @@ pip install google-cloud-aiplatform>=1.25.0
Your end-user credentials would be used to make the calls (make sure you've run
`gcloud auth login` first).
"""
from langchain.llms import VertexAI
import os
from langchain.llms import VertexAI, VertexAIModelGarden
from langchain.schema import LLMResult
def test_vertex_call() -> None:
@ -16,3 +19,34 @@ def test_vertex_call() -> None:
assert isinstance(output, str)
assert llm._llm_type == "vertexai"
assert llm.model_name == llm.client._model_id
def test_model_garden() -> None:
"""In order to run this test, you should provide an endpoint name.
Example:
export ENDPOINT_ID=...
export PROJECT=...
"""
endpoint_id = os.environ["ENDPOINT_ID"]
project = os.environ["PROJECT"]
llm = VertexAIModelGarden(endpoint_id=endpoint_id, project=project)
output = llm("What is the meaning of life?")
print(output)
assert isinstance(output, str)
assert llm._llm_type == "vertexai_model_garden"
def test_model_garden_batch() -> None:
"""In order to run this test, you should provide an endpoint name.
Example:
export ENDPOINT_ID=...
export PROJECT=...
"""
endpoint_id = os.environ["ENDPOINT_ID"]
project = os.environ["PROJECT"]
llm = VertexAIModelGarden(endpoint_id=endpoint_id, project=project)
output = llm._generate(["What is the meaning of life?", "How much is 2+2"])
assert isinstance(output, LLMResult)
assert len(output.generations) == 2