mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
chore: spedd up integration test by using smaller model (#6044)
Adds a new parameter `relative_chunk_overlap` for the `SentenceTransformersTokenTextSplitter` constructor. The parameter sets the chunk overlap using a relative factor, e.g. for a model where the token limit is 100, a `relative_chunk_overlap=0.5` implies that `chunk_overlap=50` Tag maintainers/contributors who might be interested: @hwchase17, @dev2049
This commit is contained in:
parent
5922742d56
commit
2c91f0d750
@ -52,14 +52,14 @@ def test_token_text_splitter_from_tiktoken() -> None:
|
||||
|
||||
def test_sentence_transformers_count_tokens() -> None:
|
||||
splitter = SentenceTransformersTokenTextSplitter(
|
||||
model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
|
||||
model_name="sentence-transformers/paraphrase-albert-small-v2"
|
||||
)
|
||||
text = "Lorem ipsum"
|
||||
|
||||
token_count = splitter.count_tokens(text=text)
|
||||
|
||||
expected_start_stop_token_count = 2
|
||||
expected_text_token_count = 2
|
||||
expected_text_token_count = 5
|
||||
expected_token_count = expected_start_stop_token_count + expected_text_token_count
|
||||
|
||||
assert expected_token_count == token_count
|
||||
@ -67,9 +67,9 @@ def test_sentence_transformers_count_tokens() -> None:
|
||||
|
||||
def test_sentence_transformers_split_text() -> None:
|
||||
splitter = SentenceTransformersTokenTextSplitter(
|
||||
model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
|
||||
model_name="sentence-transformers/paraphrase-albert-small-v2"
|
||||
)
|
||||
text = "Lorem ipsum"
|
||||
text = "lorem ipsum"
|
||||
text_chunks = splitter.split_text(text=text)
|
||||
expected_text_chunks = [text]
|
||||
assert expected_text_chunks == text_chunks
|
||||
@ -79,14 +79,29 @@ def test_sentence_transformers_multiple_tokens() -> None:
|
||||
splitter = SentenceTransformersTokenTextSplitter(chunk_overlap=0)
|
||||
text = "Lorem "
|
||||
|
||||
text_token_count_including_start_and_stop_tokens = splitter.count_tokens(text=text)
|
||||
count_start_and_end_tokens = 2
|
||||
text_token_count = splitter.count_tokens(text=text) - count_start_and_end_tokens
|
||||
token_multiplier = splitter.maximum_tokens_per_chunk // text_token_count + 1
|
||||
text_chunks = splitter.split_text(text=text * token_multiplier)
|
||||
token_multiplier = (
|
||||
count_start_and_end_tokens
|
||||
+ (splitter.maximum_tokens_per_chunk - count_start_and_end_tokens)
|
||||
// (
|
||||
text_token_count_including_start_and_stop_tokens
|
||||
- count_start_and_end_tokens
|
||||
)
|
||||
+ 1
|
||||
)
|
||||
|
||||
# `text_to_split` does not fit in a single chunk
|
||||
text_to_embed = text * token_multiplier
|
||||
|
||||
text_chunks = splitter.split_text(text=text_to_embed)
|
||||
|
||||
expected_number_of_chunks = 2
|
||||
|
||||
assert expected_number_of_chunks == len(text_chunks)
|
||||
actual = splitter.count_tokens(text=text_chunks[1]) - count_start_and_end_tokens
|
||||
expected = token_multiplier * text_token_count - splitter.maximum_tokens_per_chunk
|
||||
expected = (
|
||||
token_multiplier * (text_token_count_including_start_and_stop_tokens - 2)
|
||||
- splitter.maximum_tokens_per_chunk
|
||||
)
|
||||
assert expected == actual
|
||||
|
Loading…
Reference in New Issue
Block a user