mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
Updates to Vectara documentation (#8699)
- Description: updates to Vectara documentation with more details on how to get started. - Issue: NA - Dependencies: NA - Tag maintainer: @rlancemartin, @eyurtsev - Twitter handle: @vectara, @ofermend --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
This commit is contained in:
parent
5d765408ce
commit
29f51055e8
@ -8,32 +8,55 @@
|
||||
"source": [
|
||||
"# Vectara\n",
|
||||
"\n",
|
||||
">[Vectara](https://vectara.com/) is a API platform for building LLM-powered applications. It provides a simple to use API for document indexing and query that is managed by Vectara and is optimized for performance and accuracy. \n",
|
||||
">[Vectara](https://vectara.com/) is a API platform for building GenAI applications. It provides an easy-to-use API for document indexing and query that is managed by Vectara and is optimized for performance and accuracy. \n",
|
||||
"See the [Vectara API documentation ](https://docs.vectara.com/docs/) for more information on how to use the API.\n",
|
||||
"\n",
|
||||
"This notebook shows how to use functionality related to the `Vectara`'s integration with langchain.\n",
|
||||
"Note that unlike many other integrations in this category, Vectara provides an end-to-end managed service for [Grounded Generation](https://vectara.com/grounded-generation/) (aka retrieval agumented generation), which includes:\n",
|
||||
"1. A way to extract text from document files and chunk them into sentences.\n",
|
||||
"2. Its own embeddings model and vector store - each text segment is encoded into a vector embedding and stored in the Vectara internal vector store\n",
|
||||
"3. A query service that automatically encodes the query into embedding, and retrieves the most relevant text segments (including support for [Hybrid Search](https://docs.vectara.com/docs/api-reference/search-apis/lexical-matching))\n",
|
||||
"\n",
|
||||
"This notebook shows how to use functionality related to the `Vectara` vector database or the `Vectara` retriever. \n",
|
||||
"\n",
|
||||
"See the [Vectara API documentation ](https://docs.vectara.com/docs/) for more information on how to use the API."
|
||||
"All of these are supported in this LangChain integration."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "aac9563e",
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2023-04-04T10:51:22.282884Z",
|
||||
"start_time": "2023-04-04T10:51:21.408077Z"
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"cell_type": "markdown",
|
||||
"id": "dc0f4344",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Setup\n",
|
||||
"\n",
|
||||
"You will need a Vectara account to use Vectara with LangChain. To get started, use the following steps:\n",
|
||||
"1. [Sign up](https://console.vectara.com/signup) for a Vectara account if you don't already have one. Once you have completed your sign up you will have a Vectara customer ID. You can find your customer ID by clicking on your name, on the top-right of the Vectara console window.\n",
|
||||
"2. Within your account you can create one or more corpora. Each corpus represents an area that stores text data upon ingest from input documents. To create a corpus, use the **\"Create Corpus\"** button. You then provide a name to your corpus as well as a description. Optionally you can define filtering attributes and apply some advanced options. If you click on your created corpus, you can see its name and corpus ID right on the top.\n",
|
||||
"3. Next you'll need to create API keys to access the corpus. Click on the **\"Authorization\"** tab in the corpus view and then the **\"Create API Key\"** button. Give your key a name, and choose whether you want query only or query+index for your key. Click \"Create\" and you now have an active API key. Keep this key confidential. \n",
|
||||
"\n",
|
||||
"To use LangChain with Vectara, you'll need to have these three values: customer ID, corpus ID and api_key.\n",
|
||||
"You can provide those to LangChain in two ways:\n",
|
||||
"\n",
|
||||
"1. Include in your environment these three variables: `VECTARA_CUSTOMER_ID`, `VECTARA_CORPUS_ID` and `VECTARA_API_KEY`.\n",
|
||||
"\n",
|
||||
"> For example, you can set these variables using os.environ and getpass as follows:\n",
|
||||
"\n",
|
||||
"```python\n",
|
||||
"import os\n",
|
||||
"from langchain.embeddings import FakeEmbeddings\n",
|
||||
"from langchain.text_splitter import CharacterTextSplitter\n",
|
||||
"from langchain.vectorstores import Vectara\n",
|
||||
"from langchain.document_loaders import TextLoader"
|
||||
"import getpass\n",
|
||||
"\n",
|
||||
"os.environ[\"VECTARA_CUSTOMER_ID\"] = getpass.getpass(\"Vectara Customer ID:\")\n",
|
||||
"os.environ[\"VECTARA_CORPUS_ID\"] = getpass.getpass(\"Vectara Corpus ID:\")\n",
|
||||
"os.environ[\"VECTARA_API_KEY\"] = getpass.getpass(\"Vectara API Key:\")\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"2. Add them to the Vectara vectorstore constructor:\n",
|
||||
"\n",
|
||||
"```python\n",
|
||||
"vectorstore = Vectara(\n",
|
||||
" vectara_customer_id=vectara_customer_id,\n",
|
||||
" vectara_corpus_id=vectara_corpus_id,\n",
|
||||
" vectara_api_key=vectara_api_key\n",
|
||||
" )\n",
|
||||
"```"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -44,8 +67,21 @@
|
||||
"source": [
|
||||
"## Connecting to Vectara from LangChain\n",
|
||||
"\n",
|
||||
"The Vectara API provides simple API endpoints for indexing and querying, which is encapsulated in the Vectara integration.\n",
|
||||
"First let's ingest the documents using the from_documents() method:"
|
||||
"To get started, let's ingest the documents using the from_documents() method.\n",
|
||||
"We assume here that you've added your VECTARA_CUSTOMER_ID, VECTARA_CORPUS_ID and query+indexing VECTARA_API_KEY as environment variables."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "04a1f1a0",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.embeddings import FakeEmbeddings\n",
|
||||
"from langchain.text_splitter import CharacterTextSplitter\n",
|
||||
"from langchain.vectorstores import Vectara\n",
|
||||
"from langchain.document_loaders import TextLoader"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -88,7 +124,7 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Vectara's indexing API provides a file upload API where the file is handled directly by Vectara - pre-processed, chunked optimally and added to the Vectara vector store.\n",
|
||||
"To use this, we added the add_files() method (and from_files()). \n",
|
||||
"To use this, we added the add_files() method (as well as from_files()). \n",
|
||||
"\n",
|
||||
"Let's see this in action. We pick two PDF documents to upload: \n",
|
||||
"1. The \"I have a dream\" speech by Dr. King\n",
|
||||
@ -296,7 +332,7 @@
|
||||
"source": [
|
||||
"## Vectara as a Retriever\n",
|
||||
"\n",
|
||||
"Vectara, as all the other vector stores, can be used also as a LangChain Retriever:"
|
||||
"Vectara, as all the other LangChain vectorstores, is most often used as a LangChain Retriever:"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -378,7 +414,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.9"
|
||||
"version": "3.9.1"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
Loading…
Reference in New Issue
Block a user