community[minor]: infinity embedding local option (#17671)

**drop-in-replacement for sentence-transformers
inference.**

https://github.com/langchain-ai/langchain/discussions/17670

tldr from the discussion above -> around a 4x-22x speedup over using
SentenceTransformers / huggingface embeddings. For more info:
https://github.com/michaelfeil/infinity (pure-python dependency)

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
This commit is contained in:
Michael Feil 2024-02-21 16:33:13 -08:00 committed by GitHub
parent 581095b9b5
commit 242981b8f0
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 323 additions and 22 deletions

View File

@ -24,14 +24,127 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.embeddings import InfinityEmbeddings"
"from langchain_community.embeddings import InfinityEmbeddings, InfinityEmbeddingsLocal"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Optional: Make sure to start the Infinity instance\n",
"# Option 1: Use infinity from Python"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Optional: install infinity\n",
"\n",
"To install infinity use the following command. For further details check out the [Docs on Github](https://github.com/michaelfeil/infinity).\n",
"Install the torch and onnx dependencies. \n",
"\n",
"```bash\n",
"pip install infinity_emb[torch,optimum]\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"documents = [\n",
" \"Baguette is a dish.\",\n",
" \"Paris is the capital of France.\",\n",
" \"numpy is a lib for linear algebra\",\n",
" \"You escaped what I've escaped - You'd be in Paris getting fucked up too\",\n",
"]\n",
"query = \"Where is Paris?\""
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/michael/langchain/libs/langchain/.venv/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n",
"The BetterTransformer implementation does not support padding during training, as the fused kernels do not support attention masks. Beware that passing padded batched data during training may result in unexpected outputs. Please refer to https://huggingface.co/docs/optimum/bettertransformer/overview for more details.\n",
"/home/michael/langchain/libs/langchain/.venv/lib/python3.10/site-packages/optimum/bettertransformer/models/encoder_models.py:301: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at ../aten/src/ATen/NestedTensorImpl.cpp:177.)\n",
" hidden_states = torch._nested_tensor_from_mask(hidden_states, ~attention_mask)\n"
]
}
],
"source": [
"embeddings = InfinityEmbeddingsLocal(\n",
" model=\"sentence-transformers/all-MiniLM-L6-v2\",\n",
" # revision\n",
" revision=None,\n",
" # best to keep at 32\n",
" batch_size=32,\n",
" # for AMD/Nvidia GPUs via torch\n",
" device=\"cuda\",\n",
" # warm up model before execution\n",
")\n",
"\n",
"\n",
"async def embed():\n",
" # TODO: This function is just to showcase that your call can run async.\n",
"\n",
" # important: use engine inside of `async with` statement to start/stop the batching engine.\n",
" async with embeddings:\n",
" # avoid closing and starting the engine often.\n",
" # rather keep it running.\n",
" # you may call `await embeddings.__aenter__()` and `__aexit__()\n",
" # if you are sure when to manually start/stop execution` in a more granular way\n",
"\n",
" documents_embedded = await embeddings.aembed_documents(documents)\n",
" query_result = await embeddings.aembed_query(query)\n",
" print(\"embeddings created successful\")\n",
" return documents_embedded, query_result"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# run the async code however you would like\n",
"# if you are in a jupyter notebook, you can use the following\n",
"documents_embedded, query_result = await embed()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# (demo) compute similarity\n",
"import numpy as np\n",
"\n",
"scores = np.array(documents_embedded) @ np.array(query_result).T\n",
"dict(zip(documents, scores))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Option 2: Run the server, and connect via the API"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Optional: Make sure to start the Infinity instance\n",
"\n",
"To install infinity use the following command. For further details check out the [Docs on Github](https://github.com/michaelfeil/infinity).\n",
"```bash\n",
@ -40,25 +153,11 @@
]
},
{
"cell_type": "code",
"execution_count": 6,
"cell_type": "markdown",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Requirement already satisfied: infinity_emb[cli] in /home/michi/langchain/.venv/lib/python3.10/site-packages (0.0.8)\n",
"\u001b[33mWARNING: infinity-emb 0.0.8 does not provide the extra 'cli'\u001b[0m\u001b[33m\n",
"\u001b[0mRequirement already satisfied: numpy>=1.20.0 in /home/michi/langchain/.venv/lib/python3.10/site-packages (from infinity_emb[cli]) (1.24.4)\n",
"\u001b[33mWARNING: There was an error checking the latest version of pip.\u001b[0m\u001b[33m\n",
"\u001b[0m"
]
}
],
"source": [
"# Install the infinity package\n",
"%pip install --upgrade --quiet infinity_emb[cli,torch]"
"%pip install --upgrade --quiet infinity_emb[all]"
]
},
{
@ -90,7 +189,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
@ -105,14 +204,14 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"embeddings created successful\n"
"Make sure the infinity instance is running. Verify by clicking on http://localhost:7797/docs Exception: HTTPConnectionPool(host='localhost', port=7797): Max retries exceeded with url: /v1/embeddings (Caused by NewConnectionError('<urllib3.connection.HTTPConnection object at 0x7f91c35dbd30>: Failed to establish a new connection: [Errno 111] Connection refused')). \n"
]
}
],
@ -136,7 +235,7 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": null,
"metadata": {},
"outputs": [
{

View File

@ -51,6 +51,7 @@ from langchain_community.embeddings.huggingface import (
)
from langchain_community.embeddings.huggingface_hub import HuggingFaceHubEmbeddings
from langchain_community.embeddings.infinity import InfinityEmbeddings
from langchain_community.embeddings.infinity_local import InfinityEmbeddingsLocal
from langchain_community.embeddings.javelin_ai_gateway import JavelinAIGatewayEmbeddings
from langchain_community.embeddings.jina import JinaEmbeddings
from langchain_community.embeddings.johnsnowlabs import JohnSnowLabsEmbeddings
@ -105,6 +106,7 @@ __all__ = [
"HuggingFaceEmbeddings",
"HuggingFaceInferenceAPIEmbeddings",
"InfinityEmbeddings",
"InfinityEmbeddingsLocal",
"GradientEmbeddings",
"JinaEmbeddings",
"LlamaCppEmbeddings",

View File

@ -0,0 +1,156 @@
"""written under MIT Licence, Michael Feil 2023."""
import asyncio
from logging import getLogger
from typing import Any, Dict, List, Optional
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel, Extra, root_validator
__all__ = ["InfinityEmbeddingsLocal"]
logger = getLogger(__name__)
class InfinityEmbeddingsLocal(BaseModel, Embeddings):
"""Optimized Embedding models https://github.com/michaelfeil/infinity
This class deploys a local Infinity instance to embed text.
The class requires async usage.
Infinity is a class to interact with Embedding Models on https://github.com/michaelfeil/infinity
Example:
.. code-block:: python
from langchain_community.embeddings import InfinityEmbeddingsLocal
async with InfinityEmbeddingsLocal(
model="BAAI/bge-small-en-v1.5",
revision=None,
device="cpu",
) as embedder:
embeddings = await engine.aembed_documents(["text1", "text2"])
"""
model: str
"Underlying model id from huggingface, e.g. BAAI/bge-small-en-v1.5"
revision: Optional[str] = None
"Model version, the commit hash from huggingface"
batch_size: int = 32
"Internal batch size for inference, e.g. 32"
device: str = "auto"
"Device to use for inference, e.g. 'cpu' or 'cuda', or 'mps'"
backend: str = "torch"
"Backend for inference, e.g. 'torch' (recommended for ROCm/Nvidia)"
" or 'optimum' for onnx/tensorrt"
model_warmup: bool = True
"Warmup the model with the max batch size."
engine: Any = None #: :meta private:
"""Infinity's AsyncEmbeddingEngine."""
# LLM call kwargs
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator(allow_reuse=True)
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
try:
from infinity_emb import AsyncEmbeddingEngine # type: ignore
except ImportError:
raise ImportError(
"Please install the "
"`pip install 'infinity_emb[optimum,torch]>=0.0.24'` "
"package to use the InfinityEmbeddingsLocal."
)
logger.debug(f"Using InfinityEmbeddingsLocal with kwargs {values}")
values["engine"] = AsyncEmbeddingEngine(
model_name_or_path=values["model"],
device=values["device"],
revision=values["revision"],
model_warmup=values["model_warmup"],
batch_size=values["batch_size"],
engine=values["backend"],
)
return values
async def __aenter__(self) -> None:
"""start the background worker.
recommended usage is with the async with statement.
async with InfinityEmbeddingsLocal(
model="BAAI/bge-small-en-v1.5",
revision=None,
device="cpu",
) as embedder:
embeddings = await engine.aembed_documents(["text1", "text2"])
"""
await self.engine.__aenter__()
async def __aexit__(self, *args: Any) -> None:
"""stop the background worker,
required to free references to the pytorch model."""
await self.engine.__aexit__(*args)
async def aembed_documents(self, texts: List[str]) -> List[List[float]]:
"""Async call out to Infinity's embedding endpoint.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
if not self.engine.running:
logger.warning(
"Starting Infinity engine on the fly. This is not recommended."
"Please start the engine before using it."
)
async with self:
# spawning threadpool for multithreaded encode, tokenization
embeddings, _ = await self.engine.embed(texts)
# stopping threadpool on exit
logger.warning("Stopped infinity engine after usage.")
else:
embeddings, _ = await self.engine.embed(texts)
return embeddings
async def aembed_query(self, text: str) -> List[float]:
"""Async call out to Infinity's embedding endpoint.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
embeddings = await self.aembed_documents([text])
return embeddings[0]
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""
This method is async only.
"""
logger.warning(
"This method is async only. "
"Please use the async version `await aembed_documents`."
)
return asyncio.run(self.aembed_documents(texts))
def embed_query(self, text: str) -> List[float]:
""" """
logger.warning(
"This method is async only."
" Please use the async version `await aembed_query`."
)
return asyncio.run(self.aembed_query(text))

View File

@ -12,6 +12,7 @@ EXPECTED_ALL = [
"HuggingFaceEmbeddings",
"HuggingFaceInferenceAPIEmbeddings",
"InfinityEmbeddings",
"InfinityEmbeddingsLocal",
"GradientEmbeddings",
"JinaEmbeddings",
"LlamaCppEmbeddings",

View File

@ -0,0 +1,43 @@
import numpy as np
import pytest
from langchain_community.embeddings.infinity_local import InfinityEmbeddingsLocal
try:
import torch # noqa
import infinity_emb # noqa
IMPORTED_TORCH = True
except ImportError:
IMPORTED_TORCH = False
@pytest.mark.skipif(not IMPORTED_TORCH, reason="torch not installed")
@pytest.mark.asyncio
async def test_local_infinity_embeddings() -> None:
embedder = InfinityEmbeddingsLocal(
model="TaylorAI/bge-micro-v2",
device="cpu",
backend="torch",
revision=None,
batch_size=2,
model_warmup=False,
)
async with embedder:
embeddings = await embedder.aembed_documents(["text1", "text2", "text1"])
assert len(embeddings) == 3
# model has 384 dim output
assert len(embeddings[0]) == 384
assert len(embeddings[1]) == 384
assert len(embeddings[2]) == 384
# assert all different embeddings
assert (np.array(embeddings[0]) - np.array(embeddings[1]) != 0).all()
# assert identical embeddings, up to floating point error
np.testing.assert_array_equal(embeddings[0], embeddings[2])
if __name__ == "__main__":
import asyncio
asyncio.run(test_local_infinity_embeddings())