mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
openai: Update API Reference docs for AzureOpenAI Embeddings (#25312)
Update AzureOpenAI Embeddings docs
This commit is contained in:
parent
056c7c2983
commit
217a915b29
@ -13,19 +13,92 @@ from langchain_openai.embeddings.base import OpenAIEmbeddings
|
||||
|
||||
|
||||
class AzureOpenAIEmbeddings(OpenAIEmbeddings):
|
||||
"""`Azure OpenAI` Embeddings API.
|
||||
"""AzureOpenAI embedding model integration.
|
||||
|
||||
To use, you should have the
|
||||
environment variable ``AZURE_OPENAI_API_KEY`` set with your API key or pass it
|
||||
as a named parameter to the constructor.
|
||||
Setup:
|
||||
To access AzureOpenAI embedding models you'll need to create an Azure account,
|
||||
get an API key, and install the `langchain-openai` integration package.
|
||||
|
||||
Example:
|
||||
You’ll need to have an Azure OpenAI instance deployed.
|
||||
You can deploy a version on Azure Portal following this
|
||||
[guide](https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/create-resource?pivots=web-portal).
|
||||
|
||||
Once you have your instance running, make sure you have the name of your
|
||||
instance and key. You can find the key in the Azure Portal,
|
||||
under the “Keys and Endpoint” section of your instance.
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
pip install -U langchain_openai
|
||||
|
||||
# Set up your environment variables (or pass them directly to the model)
|
||||
export AZURE_OPENAI_API_KEY="your-api-key"
|
||||
export AZURE_OPENAI_ENDPOINT="https://<your-endpoint>.openai.azure.com/"
|
||||
export AZURE_OPENAI_API_VERSION="2024-02-01"
|
||||
|
||||
Key init args — completion params:
|
||||
model: str
|
||||
Name of AzureOpenAI model to use.
|
||||
dimensions: Optional[int]
|
||||
Number of dimensions for the embeddings. Can be specified only
|
||||
if the underlying model supports it.
|
||||
|
||||
Key init args — client params:
|
||||
api_key: Optional[SecretStr]
|
||||
|
||||
See full list of supported init args and their descriptions in the params section.
|
||||
|
||||
Instantiate:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_openai import AzureOpenAIEmbeddings
|
||||
|
||||
openai = AzureOpenAIEmbeddings(model="text-embedding-3-large")
|
||||
"""
|
||||
embeddings = AzureOpenAIEmbeddings(
|
||||
model="text-embedding-3-large"
|
||||
# dimensions: Optional[int] = None, # Can specify dimensions with new text-embedding-3 models
|
||||
# azure_endpoint="https://<your-endpoint>.openai.azure.com/", If not provided, will read env variable AZURE_OPENAI_ENDPOINT
|
||||
# api_key=... # Can provide an API key directly. If missing read env variable AZURE_OPENAI_API_KEY
|
||||
# openai_api_version=..., # If not provided, will read env variable AZURE_OPENAI_API_VERSION
|
||||
)
|
||||
|
||||
Embed single text:
|
||||
.. code-block:: python
|
||||
|
||||
input_text = "The meaning of life is 42"
|
||||
vector = embed.embed_query(input_text)
|
||||
print(vector[:3])
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
[-0.024603435769677162, -0.007543657906353474, 0.0039630369283258915]
|
||||
|
||||
Embed multiple texts:
|
||||
.. code-block:: python
|
||||
|
||||
input_texts = ["Document 1...", "Document 2..."]
|
||||
vectors = embed.embed_documents(input_texts)
|
||||
print(len(vectors))
|
||||
# The first 3 coordinates for the first vector
|
||||
print(vectors[0][:3])
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
2
|
||||
[-0.024603435769677162, -0.007543657906353474, 0.0039630369283258915]
|
||||
|
||||
Async:
|
||||
.. code-block:: python
|
||||
|
||||
vector = await embed.aembed_query(input_text)
|
||||
print(vector[:3])
|
||||
|
||||
# multiple:
|
||||
# await embed.aembed_documents(input_texts)
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
[-0.009100092574954033, 0.005071679595857859, -0.0029193938244134188]
|
||||
""" # noqa: E501
|
||||
|
||||
azure_endpoint: Union[str, None] = None
|
||||
"""Your Azure endpoint, including the resource.
|
||||
|
Loading…
Reference in New Issue
Block a user