openai: Update API Reference docs for AzureOpenAI Embeddings (#25312)

Update AzureOpenAI Embeddings docs
This commit is contained in:
Eugene Yurtsev 2024-08-12 15:41:18 -04:00 committed by GitHub
parent 056c7c2983
commit 217a915b29
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -13,19 +13,92 @@ from langchain_openai.embeddings.base import OpenAIEmbeddings
class AzureOpenAIEmbeddings(OpenAIEmbeddings):
"""`Azure OpenAI` Embeddings API.
"""AzureOpenAI embedding model integration.
To use, you should have the
environment variable ``AZURE_OPENAI_API_KEY`` set with your API key or pass it
as a named parameter to the constructor.
Setup:
To access AzureOpenAI embedding models you'll need to create an Azure account,
get an API key, and install the `langchain-openai` integration package.
Example:
Youll need to have an Azure OpenAI instance deployed.
You can deploy a version on Azure Portal following this
[guide](https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/create-resource?pivots=web-portal).
Once you have your instance running, make sure you have the name of your
instance and key. You can find the key in the Azure Portal,
under the Keys and Endpoint section of your instance.
.. code-block:: bash
pip install -U langchain_openai
# Set up your environment variables (or pass them directly to the model)
export AZURE_OPENAI_API_KEY="your-api-key"
export AZURE_OPENAI_ENDPOINT="https://<your-endpoint>.openai.azure.com/"
export AZURE_OPENAI_API_VERSION="2024-02-01"
Key init args completion params:
model: str
Name of AzureOpenAI model to use.
dimensions: Optional[int]
Number of dimensions for the embeddings. Can be specified only
if the underlying model supports it.
Key init args client params:
api_key: Optional[SecretStr]
See full list of supported init args and their descriptions in the params section.
Instantiate:
.. code-block:: python
from langchain_openai import AzureOpenAIEmbeddings
openai = AzureOpenAIEmbeddings(model="text-embedding-3-large")
"""
embeddings = AzureOpenAIEmbeddings(
model="text-embedding-3-large"
# dimensions: Optional[int] = None, # Can specify dimensions with new text-embedding-3 models
# azure_endpoint="https://<your-endpoint>.openai.azure.com/", If not provided, will read env variable AZURE_OPENAI_ENDPOINT
# api_key=... # Can provide an API key directly. If missing read env variable AZURE_OPENAI_API_KEY
# openai_api_version=..., # If not provided, will read env variable AZURE_OPENAI_API_VERSION
)
Embed single text:
.. code-block:: python
input_text = "The meaning of life is 42"
vector = embed.embed_query(input_text)
print(vector[:3])
.. code-block:: python
[-0.024603435769677162, -0.007543657906353474, 0.0039630369283258915]
Embed multiple texts:
.. code-block:: python
input_texts = ["Document 1...", "Document 2..."]
vectors = embed.embed_documents(input_texts)
print(len(vectors))
# The first 3 coordinates for the first vector
print(vectors[0][:3])
.. code-block:: python
2
[-0.024603435769677162, -0.007543657906353474, 0.0039630369283258915]
Async:
.. code-block:: python
vector = await embed.aembed_query(input_text)
print(vector[:3])
# multiple:
# await embed.aembed_documents(input_texts)
.. code-block:: python
[-0.009100092574954033, 0.005071679595857859, -0.0029193938244134188]
""" # noqa: E501
azure_endpoint: Union[str, None] = None
"""Your Azure endpoint, including the resource.