mirror of
https://github.com/hwchase17/langchain
synced 2024-11-04 06:00:26 +00:00
core[patch]: support labeled json schema as tools (#18935)
This commit is contained in:
parent
950ab056eb
commit
19721246f5
@ -270,7 +270,8 @@ def convert_to_openai_function(
|
||||
Args:
|
||||
function: Either a dictionary, a pydantic.BaseModel class, or a Python function.
|
||||
If a dictionary is passed in, it is assumed to already be a valid OpenAI
|
||||
function.
|
||||
function or a JSON schema with top-level 'title' and 'description' keys
|
||||
specified.
|
||||
|
||||
Returns:
|
||||
A dict version of the passed in function which is compatible with the
|
||||
@ -278,8 +279,21 @@ def convert_to_openai_function(
|
||||
"""
|
||||
from langchain_core.tools import BaseTool
|
||||
|
||||
if isinstance(function, dict):
|
||||
# already in OpenAI function format
|
||||
if isinstance(function, dict) and all(
|
||||
k in function for k in ("name", "description", "parameters")
|
||||
):
|
||||
return function
|
||||
# a JSON schema with title and description
|
||||
elif isinstance(function, dict) and all(
|
||||
k in function for k in ("title", "description", "properties")
|
||||
):
|
||||
function = function.copy()
|
||||
return {
|
||||
"name": function.pop("title"),
|
||||
"description": function.pop("description"),
|
||||
"parameters": function,
|
||||
}
|
||||
elif isinstance(function, type) and issubclass(function, BaseModel):
|
||||
return cast(Dict, convert_pydantic_to_openai_function(function))
|
||||
elif isinstance(function, BaseTool):
|
||||
@ -288,8 +302,10 @@ def convert_to_openai_function(
|
||||
return convert_python_function_to_openai_function(function)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unsupported function type {type(function)}. Functions must be passed in"
|
||||
f" as Dict, pydantic.BaseModel, or Callable."
|
||||
f"Unsupported function\n\n{function}\n\nFunctions must be passed in"
|
||||
" as Dict, pydantic.BaseModel, or Callable. If they're a dict they must"
|
||||
" either be in OpenAI function format or valid JSON schema with top-level"
|
||||
" 'title' and 'description' keys."
|
||||
)
|
||||
|
||||
|
||||
@ -301,13 +317,14 @@ def convert_to_openai_tool(
|
||||
Args:
|
||||
tool: Either a dictionary, a pydantic.BaseModel class, Python function, or
|
||||
BaseTool. If a dictionary is passed in, it is assumed to already be a valid
|
||||
OpenAI tool or OpenAI function.
|
||||
OpenAI tool, OpenAI function, or a JSON schema with top-level 'title' and
|
||||
'description' keys specified.
|
||||
|
||||
Returns:
|
||||
A dict version of the passed in tool which is compatible with the
|
||||
OpenAI tool-calling API.
|
||||
"""
|
||||
if isinstance(tool, dict) and "type" in tool:
|
||||
if isinstance(tool, dict) and tool.get("type") == "function" and "function" in tool:
|
||||
return tool
|
||||
function = convert_to_openai_function(tool)
|
||||
return {"type": "function", "function": function}
|
||||
|
@ -1,4 +1,4 @@
|
||||
from typing import Any, Callable, List, Literal, Optional, Type
|
||||
from typing import Any, Callable, Dict, List, Literal, Optional, Type
|
||||
|
||||
import pytest
|
||||
|
||||
@ -49,8 +49,29 @@ def dummy_tool() -> BaseTool:
|
||||
return DummyFunction()
|
||||
|
||||
|
||||
@pytest.fixture()
|
||||
def json_schema() -> Dict:
|
||||
return {
|
||||
"title": "dummy_function",
|
||||
"description": "dummy function",
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"arg1": {"description": "foo", "type": "integer"},
|
||||
"arg2": {
|
||||
"description": "one of 'bar', 'baz'",
|
||||
"enum": ["bar", "baz"],
|
||||
"type": "string",
|
||||
},
|
||||
},
|
||||
"required": ["arg1", "arg2"],
|
||||
}
|
||||
|
||||
|
||||
def test_convert_to_openai_function(
|
||||
pydantic: Type[BaseModel], function: Callable, dummy_tool: BaseTool
|
||||
pydantic: Type[BaseModel],
|
||||
function: Callable,
|
||||
dummy_tool: BaseTool,
|
||||
json_schema: Dict,
|
||||
) -> None:
|
||||
expected = {
|
||||
"name": "dummy_function",
|
||||
@ -69,7 +90,7 @@ def test_convert_to_openai_function(
|
||||
},
|
||||
}
|
||||
|
||||
for fn in (pydantic, function, dummy_tool, expected):
|
||||
for fn in (pydantic, function, dummy_tool, json_schema, expected):
|
||||
actual = convert_to_openai_function(fn) # type: ignore
|
||||
assert actual == expected
|
||||
|
||||
|
@ -799,7 +799,8 @@ class ChatOpenAI(BaseChatModel):
|
||||
the model output will be a dict. With a Pydantic class the returned
|
||||
attributes will be validated, whereas with a dict they will not be. If
|
||||
`method` is "function_calling" and `schema` is a dict, then the dict
|
||||
must match the OpenAI function-calling spec.
|
||||
must match the OpenAI function-calling spec or be a valid JSON schema
|
||||
with top level 'title' and 'description' keys specified.
|
||||
method: The method for steering model generation, either "function_calling"
|
||||
or "json_mode". If "function_calling" then the schema will be converted
|
||||
to an OpenAI function and the returned model will make use of the
|
||||
|
Loading…
Reference in New Issue
Block a user